
Long Short-Term Memory with Sequence
Completion for Cross-Domain Sequential

Recommendation

Guang Yang1(B) , Xiaoguang Hong1(B), Zhaohui Peng1(B), and Yang Xu2(B)

1 School of Computer Science and Technology, Shandong University, Jinan, China
loggyt@yeah.net, {hxg,pzh}@sdu.edu.cn

2 Shandong Normal University, Jinan, China
zzmylq@gmail.com

Abstract. As the emerging topic to solve the loss of time dimension informa-
tion, sequential recommender systems (SRSs) has attracted increasing attention
in recent years. Although SRSs can model the sequential user behaviors, the inter-
actions between users and items, and the evolution of users’ preferences and item
popularity over time, the challenging issues of data sparsity and cold start are
beyond our control. The conventional solutions based on cross-domain recom-
mendation aims to matrix completion by means of transferring explicit or implicit
feedback from the auxiliary domain to the target domain.Butmost existing transfer
methods can’t deal with temporal information. In this paper, we propose a Long
Short-Term Memory with Sequence Completion (SCLSTM) model for cross-
domain sequential recommendation. We first construct the sequence and supple-
ment it in which two methods are proposed. The first method is to use the intrinsic
features of users and items and the temporal features of user behaviors to estab-
lish similarity measure for sequence completion. Another method is to improve
LSTM by building the connection between the output layer and the input layer of
the next time step. Then we use LSTM to complete sequential recommendation.
Experimental results on two real datasets extracted from Amazon transaction data
demonstrate the superiority of our proposed models against other state-of-the-art
methods.

Keywords: Cross-domain sequential recommendation · Long short-term
memory · Sequence completion

1 Introduction

With the explosively growing amount of online information, recommender system (RS)
is playing an indispensable role in our daily lives as well as in the Internet industry for
the problem of information overload. The traditional RSs [1], including the content-
based, collaborative filtering and hybrid collaborative filtering RSs, model the user-item
interactions in a static way and lost the time dimension.

In the real world, users’ shopping behaviors usually happen successively in a
sequence, rather than in an isolated manner. Taking the real events of someone U1

© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 378–393, 2020.
https://doi.org/10.1007/978-3-030-60259-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60259-8_28&domain=pdf
http://orcid.org/0000-0003-3440-230X
https://doi.org/10.1007/978-3-030-60259-8_28


Long Short-Term Memory with Sequence Completion 379

depicted in Fig. 1 as an example, U1 bought a bag of infant formula milk, a baby stroller
and diapers successively. So we can all guess about the likelihood of buying baby bot-
tles. Likewise, the sequential dependencies can be seen in next case. Before U2 started
a vacation, he booked a flight, several tickets for some tourist attractions and rented a
car successively, and his next action may be booking a local hotel. In such a case, based
on the location of each attraction and car rental company, we can guess the location of
the hotel. In the above scenario, each of U2’s next actions depends on the prior ones
and therefore all the four consumer behaviors are sequentially dependent. Such kind of
sequential dependencies commonly exist in actual data but cannot be well captured by
the conventional collaborative filtering RSs or content-based RSs [2], which essentially
motivates the development of sequential RSs.

Fig. 1. Two examples of sequential RSs

Furthermore, user interest is dynamic rather than static over time [30]. How to cap-
ture user interest accurately to enhance the accuracy of recommendation results is an
enormous practical challenge in RSs. For example, many people want to watch horror
movies when Halloween comes and love movies are always popular on Valentine’s Day.
Such dynamics are of great significance for precisely profiling a user or an item for more
accurate recommendations. The traditional RSs can’t capture the dynamic change of
interest or behavior well when sequential recommender systems (SRSs) are competent
for the task.

In conclusion, sequential recommender systems meet our requirements for these
objective situations, so they can greatly improve recommendation performance [3].

Unfortunately, recommender systems are generally faced with data sparsity and cold
start problems in that users interact with only an extremely tiny part of the commodities
on a website or a directory and sequential recommender systems are no exception.
As a promising solution to address these issues, cross-domain recommender systems
[4, 5] have gained increasing attention in recent years. This kind of algorithm tries to
utilize explicit or implicit feedbacks from multiple auxiliary domains to improve the
recommendation performance in the target domain. As shown in Fig. 2, commodities
are divided into different domains according to their attributes or categories. Users who
have active data in both domains are called linked users and we mark them with dashed
red box. Users who only have active data in the target domain are called cold start users.
Our goal is to make recommendations for cold start users by linked users. Linked users
serve as a bridge for our model to transfer knowledge across domains. Existing studies
[4, 5, 6, and 7] can’t process sequence data. The sequence is split into separate data to fill



380 G. Yang et al.

in the user/itemmatrix and all temporal information is discarded. Therefore, how to deal
with sequence data for cross-domain recommender systems remain an open problem.

Fig. 2. Illustration of the cross-domain recommendation for cold-start users

To address the above challenges, we propose a Long Short-Term Memory with
Sequence Completion (SCLSTM) model for cross-domain sequential recommendation
in this paper. Specifically, we first construct the sequence and supplement it in which two
methods are proposed. The first method is to use the intrinsic features of users and items
and the temporal features of user behaviors to establish similarity measure for sequence
completion. Another method is to improve Long Short-TermMemory network (LSTM)
by building the connection between the output layer and the input layer of the next
time step. Complete the sequence by adding this input logic unit. Then we use LSTM
to complete sequential recommendation. Our major contributions are summarized as
follows:

• We define the concept of sequence completion and propose two methods of sequence
completion. One uses similarity measure, the other uses improved LSTM.

Feature

Similarity measureSequence

Time

Sim I

Sim U

Filling posi on

SequenceSequence comple on

LSTM Recomme
nda on

Ra ng similarity

Feature similarity

Time similarity

Fig. 3. SCLSTM with similarity measure recommendation framework



Long Short-Term Memory with Sequence Completion 381

• We propose a Long Short-Term Memory with Sequence Completion (SCLSTM)
model for cross-domain sequential recommendation, which can solve data sparsity
and cold start problems of sequential recommender systems.

• We systematically evaluate our proposal through comparing it with the state-of-the-
art algorithms on the dataset of Amazon1. The results confirm that our new method
substantially improves the recommendation performance.

2 Sequence Completion

In real life, there are many sequences, such as a piece of text, a pulse signal and amelody.
When we read a damaged book, it is difficult for us to understand it accurately. We must
fill these sequences with external knowledge to solve these problems. For example,
look at a fragmentary passage, “The Spider-Man series broke ground by featuring, a
from behind Spider-Man’s secret identity.” Almost all superhero fans understand what
it means. “The Spider-Man series broke ground by featuring Peter Parker, a high school
student from Queens behind Spider-Man’s secret identity.” Why has this happened?
These superhero fans use their animation knowledge to picture the sentence.We formally
define the sequence completion as follows.

Definition 1. (Sequence Completion) For a sequence Sm of missing elements, the miss-
ing elements are recovered by analyzing the effective elements and context knowledge.
Make the sequence Sm close to the complete sequence S. (min{|S − Sm|}).

Take a word recognition as an example, given a word “spi_er” with a missing letter,
we guess that the word is “spinner”, “spider” or others according to dictionary infor-
mation. Then, according to the context information, the word “spider” is determined.
But when the word with a missing letter becomes “s_er”, it’s very difficult to deter-
mine what it really means. Common algorithms, especially RNN (Recurrent Neural
Network)-based algorithms, can use sequence data to classify and are actually sequence
completion algorithms. But these algorithms face two difficult problems. First of all, the
sparser the data, the worse the algorithm performance. Especially the cold start problem
is a fatal blow to these supervised algorithms. Secondly, the sequence of recommender
system is quite different from the common sequence. Limited by the sampling method
and platform, we cannot capture all the sequence data. Take book purchase record of
Amazon as an example, the channels for users to obtain books include hypostatic stores,
websites and libraries, even could borrow them from friends. But we can only collect
part of the data through Amazon, so we can’t get the real complete sequence on reading
records.

For these reasons and more, we propose two novel algorithms of sequence
completion.

3 SCLSTM with Similarity Measure

We propose a recommendation framework called SCLSTM based on similarity measure
model and the framework is as shown in Fig. 3. First, we extract three kinds of data from

1 https://www.amazon.com.

https://www.amazon.com


382 G. Yang et al.

the logs, which they are users-items interaction sequences, users/items feature graph and
users action time list. Then, we use these three groups of data to build three similarity
measure models for users and items. The rating similarity, feature similarity and time
similarity are calculated respectively, and combining three models to get user similarity
SimU and item similarity SimI. Next, the user similarity is used to determine the location
and length of sequence completion and item similarity is used to determine the content
of sequence completion. Based on the previous step, we complete sequence completion
and get relatively complete sequence data. Finally, we use the sequence we just obtained
as input and use the LSTM model to recommend.

3.1 User and Item Similarity Measures

Rating Similarity Measure
We decide to use the classic cosine similarity algorithm to calculate rating similarity.
We can compute the first similarity measure between user a and b as follows:

PRab =
∑

e∈I(a,b)(rae − ra)(rbe − rb)
√∑

e∈I(a,b)(rae − ra)2
√∑

e∈I(a,b)(rbe − rb)2
(1)

SimR
ab = e−ωPRab(ω > 0) (2)

Where ω is a predefined parameter. Given two users a and b, rae represents the user’s
rating of the item e and ra represents the average score of user a. If they have commonly
rated items, I(a, b) represents the set of common items. |I(a, b)| represents the size of
the set. Here, we adopt an exponential function to transform users’ rating difference into
a similarity value. The greater the value of Sim, the greater the similarity.

For items, our formula has the same principle and form. Given two items c and d ,
we can compute the similarity measure between item c and d as follows:

PRcd =
∑

e∈I(c,d)(rec − rc)(red − rd )
√∑

e∈I(c,d)(rec − rc)2
√∑

e∈I(c,d)(red − rd )2
(3)

SimR
cd = e−ωPRcd (ω > 0) (4)

Feature Similarity Measure
In e-commerce websites, users and merchandise have many characteristics besides the
shopping records. For example, mobile phones have many features such as brand, price,
color and screen size, etc. These features are just as important as the rating matrix but
often ignored by similarity measure. We decided to use similarity search on graph to
deal with these similarity measure [26]. First of all, we use user features and commodity
features to create two graphs. Users, items and their features are the nodes on the graph.
An edge indicates that the user/itemowns the feature. If two nodes have similar neighbors



Long Short-Term Memory with Sequence Completion 383

in the network, we think they are similar. We can compute the second similarity measure
between node a and b as follows:

SimF
ab =

∑|I(a)|
i=1

∑|I(b)|
j=1 SimF

(
Ii(a), Ij(b)

)

|I(a)||I(b)| (5)

SimF
ab = 0, ifI(a) = ∅ or I(b) = ∅ (6)

SimF
aa = 1 (7)

SimF
ab = SimF

ba, symmetric (8)

Where I(a) represents the entry neighborhood of node a, |I(a)| represents the size of the
neighborhood. This recursive algorithm is the same on two graphs, so we can express it
uniformly.

Time Similarity Measure
With the advent of the era of mass information that consists of great time span data,
the importance of temporal information is highlighted. Intuitively, the older the data
is, the less time weight will be in similarity calculation, so the conventional research
always use the forgetting curve to model the time factor. However, the time difference
between different events or behaviors also contains important information. Sequence can
represent relative time difference, but absolute time difference is often ignored. In the
case of movies, we can measure the similarity of two movies by the number of people
watching them together. But there are two difficult problems in the actual calculation.
First of all, for many similar films, we can no longer distinguish the similarity differences
in detail by traditional algorithms. Secondly, most of the time, what we are looking for
is the next movie that we will see immediately after this movie, rather than the movie
that will be seen eventually. So we created a model using time difference to compute
similarity. The basic idea is that the closer the two movies are viewed, the more relevant
they are. Take another example of a computer journal, the time interval between the
author’s papers published on TOC and TPDS is very short. Therefore, we can think that
TOC and TPDS themes are very similar, and the level is very close. In order to solve the
above problems, we created a time similarity measure model as follows:

�Tc,d |ui =
∑kcd

j=1 g
(
tc|ui − td |ui

)

kcd tm
(9)

�Tc,d = |I(c)||I(d)|
|I(c, d)| ·

∑|I(c,d)|
i=1 �Tc,d |ui

|I(c, d)| (10)

SimT
cd = e−μ�Tc,d (μ > 0) (11)

Where μ is a predefined parameter. Take shopping behavior as an example, �Tc,d |ui
represents the average time interval between the purchase of items c and d by user ui.
tc|ui represents the time when user ui purchases commodity c at one time. tm represents



384 G. Yang et al.

the average time interval of user ui‘s shopping behavior. Because usersmay buy the same
product multiple times, kcd represents the number of times user ui purchases commodity
c. g

(
tc|ui − td |ui

)
indicates that for each tc|ui , we select the closest td |ui to calculate the

time difference. When there are two closest times, select the one that can get a positive
value. I(c, d) represents a set of userswho jointly purchase two items.|I(c, d)| represents
the size of the set. I(c) represents a set of users who purchased item c. �Tc,d represents
the average time interval between the purchase of items c and d by all common users.
The first half of the formula ensures that hot users/items do not affect the accuracy of
the formula in Eq. 10. Here, we adopt an exponential function to transform users’ rating
difference into a similarity value.

In the later experiments, we verified the superiority of our innovative similarity
algorithm. Finally, we combine the three categories of similarity:

Sim = α SimR + βSimF + γ SimT (12)

Where α, β and γ are the weights to control the importance of the three parts and Sim
is the similarity we finally get.

3.2 Sequence Completion with Similarity Measure

First of all, given a cold start user a, we design a formula to calculate the heterogeneous
similarity between user a and item c, so as to get the most similar top-N items with user
a, and restrict these items from the target domain.

Simac =
∑

i∈Ic Simai

|I(c)| (13)

Then, we change the SimT model slightly, and change the absolute time to the relative
time, we can get a similarity model SimRT and �TRT about the relative time.

Given a rating sequence of user a, j is an element in the sequence and i is an element
in the set of top-N. The filling fraction formula is as follows:

fij = 1

ni
SimaiSim

RT
ji (14)

Find the largest fij, fill its corresponding element i into the sequence, and fill in the front
or back of position j. The front and back are determined by the positive and negative of
�TRT . ni indicates the number of times the element i has been filled in the sequence.

Finally, the sequence is updated and the filling fraction is calculated repeatedly. The
algorithm is repeated l times and l < N . The rating scores are calculated together as
follows:

rai=ra + τ
∑m

k=1
SimR

ak(rki − rk) (15)

Where τ is a predefined parameter, and τ > 0. Finally, the filling sequence S ′ is obtained.
The pseudocode of the proposed sequence completion algorithm is shown in Algorithm
1.



Long Short-Term Memory with Sequence Completion 385

: the sequence length that we set, .
Output : the filling sequence we obtained. 

1: while do
2: for each item  in do
3: for each item  in do
4: ;

5: ;
6: if then
7:       Fill element  into the sequence, immediately after ;
8:  else Fill element  into the sequence, ahead of ;
9: ;
10:  return ;

Algorithm 1 sequence completion 
Input : user a rating sequence for items. 

: the set of most similar top-N items with user .

3.3 Sequential Recommendation

Through Long Short-Term Memory network (LSTM) [28], we finally get the rec-
ommended results for cold start users. We choose Cross Entropy Loss to find the
error.

4 SCLSTM with Improved LSTM

Another model is to improve LSTM by building the connection between the output layer
and the input layer of the next time step. Complete the sequence by adding this input
logic unit. We can see the architecture of the model in Fig. 4.

Fig. 4. Improved LSTM framework

By adding a judgment unit, we decide whether to take the output of this step as the
input of the next step, so as to move the whole sequence backward. The algorithm uses
the filling fraction formula in the previous chapter. The formula of judgment unit is as
follows:

Ipt =
{
Opt−1, if WifOpt−1xt−1 + bi ≥ Wjfxtxt−1 , then t + +;
xt, if WifOpt−1xt−1 + bi < Wjfxtxt−1

(16)

Where Ipt represents the input of time step t,Opt−1 represents the output of time step t−1
and xt represents the sequence element of time step t. fij is the filling fraction formula in



386 G. Yang et al.

Eq. 14. t++means to insertOpt−1 into the sequence, then the remaining elements move
backward in turn. Wi and Wj is the weight parameter and bi is the deviation parameter.
Theywere trained togetherwith other parameters of LSTM. In the process of propagation
of neural networks, when Ipt = Opt−1, the propagation actually stops. Therefore, the
number of iterations must be greater than the length of the maximum sequence.

5 Experiments

5.1 Experiments Settings

We use the Amazon dataset [29] to evaluate the performance of our model and baselines.
There are ratings, simple attribute and reviews in total spanning from May 1996 to July
2014. It has 21 categories of items and we choose the three most widely used categories
in cross-domain recommendation to perform the experiment. In order to gain better
experiment performance, we filter the content in the dataset. We grab data from IMDb2

and Google3 to supplement features of users and items. The statistics of the two datasets
are given in Table 1. We compare our model with the following baselines:

Table 1. The statistics of the two datasets

Dataset 1 Dataset 2

Domain Movies Books Movies CDs

Users 3479 4237

Items 3983 2473 4302 5766

Ratings 19011 13002 43658 30263

Density 0.00193 0.00132 0.00176 0.00122

CMF: Collective Matrix Factorization (CMF) [27] tends to incorporate different
sources of information by simultaneously factorizing multiple matrices.

EMCDR: This model [25] adopts matrix factorization to learn latent factors first and
then utilize an MLP network to map the user latent factors.

Markov-RS: Markov chain-based sequential recommender systems [10] adoptMarkov
chain models to model the transitions over user-item interactions in a sequence, for the
prediction of the next interaction.

LSTM: Given a sequence of historical user-item interactions, an RNN-based sequential
recommender system [28] tries to predict the next possible interaction by modelling the
sequential dependencies over the given interactions.

2 https://www.imdb.com/.
3 https://www.google.com/.

https://www.imdb.com/
https://www.google.com/


Long Short-Term Memory with Sequence Completion 387

5.2 Evaluation Metric

In both data sets, we choose the domain with sparse data as the target domain. We select
some users randomly in the target domain and hide their information as cold start users.
In our experiments, we set the proportions of cold start users as 70%, 50% and 30%
of the initial users respectively. The proportion is denoted as φ. We adopt Root Mean
Square Error (RMSE) and Hit Ratio defined as follows as the evaluation metrics.

RMSE =
√

∑

rac∈Itest

(
rac − rac

∧)2

|Itest | (17)

Where Itest is the set of test ratings. rac denotes an observed rating in Itest . rac
∧

represents
the predictive value of rac. |Itest | is the number of test ratings.

Hit Ratio =
∑

u G(Tu ∈ R(u, t))

|U | (18)

Where G(·) is an indicator function, R(u, t) is a set of items recommended to user u at a
specified time period t, Tu is the test item that user u accessed at a specified time period
t and |U | is size of all test sets. If the test item appears in the recommendation set, we
call it a hit.

5.3 Experimental Results

The experimental results of RMSE on “Movies & Books” are shown in Table 2, and
the results on “Movies & CDs” are presented in Table 3. The best performance of these
models is shown in boldface. Because the data in the movie domain is relatively dense,
we regard the movie domain as an auxiliary domain in both datasets. Our approaches
are SCLSTMwith similarity measure (SCLSTM1) and SCLSTMwith improved LSTM
(SCLSTM2). The parameters α, β and γ were finally determined to be 0.3, 0.1 and 0.6
in Eq. 14.

Table 2. Recommendation performance on “Movies & Books”

RMSE

φ 70% 50% 30%

CMF 1.4621 1.3305 1.2648

EMCDR 1.3583 1.0048 0.9496

Markov-RS 1.4365 1.4008 1.3701

LSTM 1.2543 1.1568 0.9970

SCLSTM1 0.9477 0.9432 0.9376

SCLSTM2 0.9951 0.9765 0.9320



388 G. Yang et al.

Table 3. Recommendation performance on “Movies & CDs”

RMSE

φ 70% 50% 30%

CMF 1.6255 1.6118 1.6032

EMCDR 1.6753 1.1238 1.1494

Markov-RS 1.4213 1.4077 1.3653

LSTM 1.2775 1.2203 1.0988

SCLSTM1 1.1380 1.0776 1.0152

SCLSTM2 1.2203 1.0377 0.9961

We evaluate the performance of different models under different values of φ by
RMSE model. From Tables 2 and 3, one can draw the conclusion that SCLSTM1 and
SCLSTM2 are superior to all the state-of-the-art methods in cross-domain recommenda-
tion for cold start users. LSTM, SCLSTM1 and SCLSTM2 all perform better than CMF
and EMCDR which proves the effectiveness of deep learning methods in cross-domain
recommendation, even though the algorithm is not specially designed for cross-domain
recommendation. With the increasing sparsity of data, the efficiency of all algorithms
has declined. But we can see that the efficiency of SCLSTM1 fall less than those of
other algorithms. Its performance is the most stable of all algorithms. When the data is
denser, SCLSTM2 performs better than SCLSTM1. When the data becomes sparse, the
performance of SCLSTM1 begins to exceed that of SCLSTM2. This is closely related
to the advantage of SCLSTM1 as an algorithm based on similarity measure.

0

0.02

0.04

0.06

0.08

0.1

5 10 15 20 25

Hi
t R

a
o

Time Period t

CMF EMCDR

Markov-RS LSTM

SCLSTM1 SCLSTM2

Fig. 5. Hit Ratio on “Movies & Books”

0
0.02
0.04
0.06
0.08

0.1
0.12

5 10 15 20 25

Hi
t R

a
o

Time Period t

CMF EMCDR

Markov-RS LSTM

SCLSTM1 SCLSTM2

Fig. 6. Hit Ratio on “Movies & CDs”



Long Short-Term Memory with Sequence Completion 389

Distinguished from other recommender systems, the most important feature of
sequence recommendation is that its input and output are sequences. With this, we can
not only recommend, but also recommend the right products at the right time. RMSE
can’t express this feature, but Hit Ratio can. Specified time period t represents the contin-
uous t-times shopping behavior. We predict the t-times shopping information, and then
compare it with the real t-length sequence. If there is one data coincidence, it means
one hit. For the non-sequence recommendation algorithms CMF and EMCDR and the
sequence recommendation algorithm Markov-RS which cannot output sequence data,
we use Top-t data instead of prediction data. Figure 5 and 6 show that the results of Hit
Ratio vary with t while φ = 30%. As you can see from the graph, the smaller the t, the
greater the ratio of our two algorithms over other algorithms. With the increase of φ, t
is fixed to 5 because of the sparse data in Fig. 7 and 8. Combining these four graphs, we
can see that our two algorithms show great superiority in Hit Ratio.

0

0.01

0.02

0.03

0.04

0.05

30% 50% 70%

Hi
t R

a
o

φ

CMF EMCDR

Markov-RS LSTM

SCLSTM1 SCLSTM2

Fig. 7. Hit ratio on “Movies & Books” with t
= 5

0

0.01

0.02

0.03

0.04

30% 50% 70%

Hi
t R

a
o

φ

CMF EMCDR

Markov-RS LSTM

SCLSTM1 SCLSTM2

Fig. 8. Hit ratio on “Movies & CDs” with t =
5

Finally, we use collaborative filtering with different similarity algorithms to predict
movie ratings in theAmazonmovie dataset andutilizeRMSE to evaluate the performance
of all similarity algorithms. The similar algorithms we compare are Euclidean Distance
(ED), ChebyshevDistance (CD), Cosine Similarity (CS), Personalized PageRank (PPR),
SimRank (SR) [26], Jaccard Coefficient (JC) and our Time SimilarityMeasure (TS). The
experimental results are shown in Fig. 9 and our algorithm shows great superiority.



390 G. Yang et al.

0.5
0.6
0.7
0.8
0.9

1

Similarity Algorithms

RM
SE

ED CD CS PPR SR JC TS

Fig. 9. Similarity algorithm performance

6 Related Work

Sequential Recommender Systems. Existing works about sequential recommender
systems (SRSs) mostly consist of traditional sequence models [8–10], latent represen-
tation models [11–15], and deep neural network models [16–21].

Yap [8] proposed a sequential pattern-based recommender system which can mine
frequent patterns on sequence data. Garcin [9] proposed a method of directly calculating
the Markov chain transition probability based on the explicit observations. Feng [10]
embedded the Markov chains into a Euclidean space and then calculates the transition
probabilities between interactions based on their Euclidean distance.

Factorization machine-based SRSs usually utilize the matrix factorization or tensor
factorization to factorize the observed user-item interactions into latent factors of users
and items for recommendations [11, 12]. Such methods presents challenges in the face
of data sparsity. Embedding-based SRSs learn a latent representations for each user and
item for the subsequent recommendations by encoding all the user-item interactions in
a sequence into a latent space. Specifically, some works take the learned latent represen-
tations as the input of a network to further calculate an interaction score between users
and items, or successive users’ actions [13, 14], while other works directly utilize them
to calculate a metric like the Euclidean distance as the interaction score [15].

Deep neural networks nearly dominate SRSs in the past few years.Wu [16] proposed
a method of capturing the long-term dependencies in a sequence with long short-term
memory (LSTM)model while Hidasi [17] utilized gated recurrent unit (GRU)model and
Quadrana [18] utilized hierarchical RNN. Both models are based on the improvement of
recurrent neural network (RNN). A few works [19, 20] developed convolutional neural
networks (CNN)-based SRSs. They first put all sequence data into a matrix, and then
treat such a matrix as an image in the time and latent spaces. However, due to the
limited sizes of matrix dimension CNN-based SRSs cannot effectively capture long-
term dependencies. This is an obvious defect for sequence recommendation. Wu [21]
transformed sequence data into directed graphs by mapping each sequence to a path and
taking each interaction as a node in the graph, and then utilized graph neural network
(GNN)-based SRSs to commendation.



Long Short-Term Memory with Sequence Completion 391

Cross-Domain Recommender Systems. Cross-domain recommender systems have
gained increasing attention in recent years. Existing studies [4–7] including the
knowledge aggregation-based cross-domain recommender systems and the knowledge
transfer-based cross-domain recommender systems and the latter methods is the focus
of current research. Pan [22] proposed an adaptive models sharing potential features
between two domains. Unlike adaptive algorithms, Pan [23] proposed a cooperative
algorithms by learning potential features simultaneously between two domains, and
optimizing a common objective function. Li [24] proposed a model based on rating
patterns transfer.

7 Conclusion and Future Work

In this paper, we propose a Long Short-TermMemory with Sequence Completion model
for cross-domain sequential recommendation. We first construct the sequence and sup-
plement it in which two methods are proposed. Then we use LSTM to complete sequen-
tial recommendation. Experimental results on two real datasets extracted from Ama-
zon transaction data demonstrate the superiority of our proposed models against other
state-of-the-art methods. The current context of a user or commodity may greatly affect
the user’s choice of goods. When making recommendations, this should be taken into
account. Therefore context-aware cross-domain sequential recommendations would be
an important direction in our future works.

Acknowledgments. This work was supported by Shandong Provincial Key Research and Devel-
opment Program (Major Scientific andTechnological InnovationProject) (No. 2019JZZY010105),
and NSF of Shandong, China (No. ZR2017MF065).

References

1. Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., Zhang, F.: A hybrid collaborative filtering model
with deep structure for recommender systems. In: AAAI 2017, pp. 1309–1315 (2017)

2. Kang, W.-C., Wan, M., McAuley, J.J.: Recommendation through mixtures of heterogeneous
item relationships. In: CIKM 2018, pp. 1143–1152 (2018)

3. Wang, S., Hu, L., Wang, Y., Cao, L., Sheng, Q.Z., Orgun, M.A.: Sequential recommender
systems: challenges, progress and prospects. In: IJCAI 2019, pp. 6332–6338 (2019)

4. Song, T., Peng, Z., Wang, S., Fu, W., Hong, X., Yu, P.S.: Review-based cross-domain recom-
mendation through joint tensor factorization. In: Candan, S., Chen, L., Pedersen, T.B., Chang,
L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp. 525–540. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-55753-3_33

5. Wang, X., Peng, Z.,Wang, S., Yu, Philip S., Fu,W., Hong, X.: Cross-domain recommendation
for cold-start users via neighborhood based feature mapping. In: Pei, J., Manolopoulos, Y.,
Sadiq, S., Li, J. (eds.) DASFAA 2018. LNCS, vol. 10827, pp. 158–165. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91452-7_11

6. Cantador, I., Fernández-Tobías, I., Berkovsky, S., Cremonesi, P.: Cross-domain recommender
systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook,
pp. 919–959. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_27

https://doi.org/10.1007/978-3-319-55753-3_33
https://doi.org/10.1007/978-3-319-91452-7_11
https://doi.org/10.1007/978-1-4899-7637-6_27


392 G. Yang et al.

7. Ignacio, F.-T., Cantador, I., Kaminskas, M., Ricci, F.: Cross-domain recommender systems: a
survey of the state of the art. In: Spanish Conference on Information Retrieval, vol. 24 (2012)

8. Yap, G.-E., Li, X.-L., Yu, P.S.: Effective next-items recommendation via personalized sequen-
tial pattern mining. In: Lee, S.-G., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.)
DASFAA 2012. LNCS, vol. 7239, pp. 48–64. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29035-0_4

9. Garcin, F., Dimitrakakis, C., Faltings, B.: Personalized news recommendation with context
trees. In: RecSys 2013, pp. 105–112 (2013)

10. Feng, S., Li, X., Zeng, Y., Cong, G., Chee, Y.M., Yuan, Q.: Personalized ranking metric
embedding for next new POI recommendation. In: IJCAI 2015, pp. 2069–2075 (2015)

11. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized Markov chains
for next-basket recommendation. In: WWW 2010, pp. 811–820 (2010)

12. Hidasi, B., Tikk, D.: General factorization framework for context-aware recommenda-
tions. DataMin. Knowl. Discov. 30(2), 342–371 (2015). https://doi.org/10.1007/s10618-015-
0417-y

13. Wang, P., Guo, J., Lan, Y., Xu, J., Wan, S., Cheng, X.: Learning hierarchical representation
model for nextbasket recommendation. In: Proceedings of the 38th International ACMSIGIR
Conference on Research and Development in Information Retrieval, pp. 403–412 (2015)

14. Wang, S., Hu, L., Cao, L., Huang, X., Lian, D., Liu, W.: Attention-based transactional context
embedding for next-item recommendation. In: AAAI 2018, pp. 2532–2539 (2018)

15. He, R., Kang, W.-C., McAuley, J.J.: Translation-based recommendation: a scalable method
for modeling sequential behavior. In: IJCAI 2018, pp. 5264–5268 (2018)

16. Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A.J.: How Jing: recurrent recommender networks.
In: WSDM 2017, pp. 495–503 (2017)

17. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with
recurrent neural networks. In: ICLR (Poster) (2016)

18. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based rec-
ommendations with hierarchical recurrent neural networks. In: RecSys 2017, pp. 130–137
(2017)

19. Tang, J., Wang, K.: Personalized top-N sequential recommendation via convolutional
sequence embedding. In: WSDM 2018, pp. 565–573 (2018)

20. Yuan, F., Karatzoglou, A., Arapakis, I., Jose, J.M., He, X.: A simple convolutional generative
network for next item recommendation. In: WSDM 2019, pp. 582–590 (2019)

21. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with
graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 346–353 (2019)

22. Pan, W., Xiang, E.W., Liu, N.N., Yang, Q.: Transfer learning in collaborative filtering for
sparsity reduction. In: AAAI 2010 (2010)

23. Pan, W., Liu, N.N., Xiang, E.W., Yang, Q.: Transfer learning to predict missing ratings via
heterogeneous user feedbacks. In: IJCAI 2011, pp. 2318–2323 (2011)

24. Li, B., Yang, Q., Xue, X.: Can movies and books collaborate? cross-domain collaborative
filtering for sparsity reduction. In: IJCAI 2009, pp. 2052–2057 (2009)

25. Man, T., Shen, H., Jin, X., Cheng, X.: Cross-domain recommendation: an embedding and
mapping approach. In: IJCAI 2017, pp. 2464–2470 (2017)

26. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: KDD 2002,
pp. 538–543 (2002)

27. Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: KDD
2008, pp. 650–658 (2008)

28. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

https://doi.org/10.1007/978-3-642-29035-0_4
https://doi.org/10.1007/s10618-015-0417-y


Long Short-Term Memory with Sequence Completion 393

29. McAuley, J.J., Pandey, R., Leskovec, J.: Inferring networks of substitutable and complemen-
tary products. In: KDD 2015, pp. 785–794 (2015)

30. Wang, S., Hu, X., Yu, P.S., Li, Z.: MMRate: inferring multi-aspect diffusion networks with
multi-pattern cascades. In: KDD 2014, pp. 1246–1255 (2014)


	Long Short-Term Memory with Sequence Completion for Cross-Domain Sequential Recommendation
	1 Introduction
	2 Sequence Completion
	3 SCLSTM with Similarity Measure
	3.1 User and Item Similarity Measures
	3.2 Sequence Completion with Similarity Measure
	3.3 Sequential Recommendation

	4 SCLSTM with Improved LSTM
	5 Experiments
	5.1 Experiments Settings
	5.2 Evaluation Metric
	5.3 Experimental Results

	6 Related Work
	7 Conclusion and Future Work
	References




