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Abstract. Over the last decade, huge number of time series stream data
are continuously being produced in diverse fields, including finance, sig-
nal processing, industry, astronomy and so on. Since time series data has
high-dimensional, real-valued, continuous and other related properties,
it is of great importance to do dimensionality reduction as a preliminary
step. In this paper, we propose a novel online segmentation algorithm
based on the importance of TPs to represent the time series into some
continuous subsequences and maintain the corresponding local temporal
features of the raw time series data. To demonstrate the advantage of
our proposed algorithm, we provide extensive experimental results on
different kinds of time series datasets for validating our algorithm and
comparing it with other baseline methods of online segmentation.

Keywords: Data mining · Streaming time series ·
Online segmentation · Algorithm

1 Introduction

Nowadays, a great number of intelligent devices in extensive fields are con-
tinuously producing streaming time series. Due to the high-dimensional, large
amount, continuous and other related properties, it is unrealistic to do further
data mining research on the raw streaming time series directly. Accordingly, the
online segmentation for streaming time series should be done to reduce both
the space and the computational cost in the first place. Online segmentation
approach for streaming time series, which is aimed for not only providing the
segmentation continuously, but also ensure the corresponding results retain the
main temporal features of the raw data.

– The similarity-based matching and pattern recognition of time series data
first need to discover several “primitive shapes” [1] or “frequent patterns” [2]
subsequences, which can be used for reducing the complexity of the following
similarity measurement steps.
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– In time series outlier detection tasks, the segmentation approach can improve
the efficiency of eliminating those normal time sequences.

– The typical prototypes [3] should be created for the predefined classes when
doing time series classification tasks, which could be generated by the seg-
mentation approach as a preprocessing step.

– In time series clustering tasks, meaningful temporal feature time sequences
instead of raw data points, produced by segmentation process, would improve
the convergence ability [4] of clustering algorithms, such as K-means.

In this paper, we aim to produce approximate representation which contains
the main temporal features and process streaming time series efficiently. The
Corresponding contributions could be summarized as follows.

1. We propose an online segmentation algorithm for streaming time series, called
feature-based online segmentation algorithm (FOS), which subdivides the
time series by a set of TPs, which do reflect the corresponding local tem-
poral features.

2. We evaluate the different importance of TPs by standing on a more holistic
view and selecting the most important TP to preform backward and forward
segmentation to maintain a high similarity between the series of segments
and the raw time series.

3. Comprehensive experiments have been conducted on both open source and
different types of the UCR time series datasets in comparison with other
baseline methods to demonstrate the advantages of our proposed algorithm.

2 Related Work

Scholars have already proposed a large number of time series segmentation meth-
ods, including Discrete Fourier Transform (DFT) [5,6], Discrete Wavelet Trans-
form (DWT) [7], Singular Value Decomposition (SVD) [8], Piecewise Aggregate
Approximation (PAA) [9], Piecewise Linear Representation (PLR) [10] and Sym-
bolic Aggregate approXimation (SAX) [11].

Piecewise Linear Representation (PLR) refers to the approximation of a time
series T , of length n, with K connected straight lines [12], which is in line with
human visual experience, and lower dimension and faster calculation speed of
PLR makes the storage, transmission of the data more efficient [1,3,13]. There-
fore, PLR is more suitable for segmenting and approximatively representing
streaming time series. The segmentation based on PLR can be described as
follow:

For a given time series T = (a1, a2, . . . , ai, . . . , aj , . . . , an) of length n, where
n can be a constant value or continues to grow without restriction. The T will
be divided into sequences S = (S1, S2, . . . , Sk) while (1 ≤ k ≤ n − 1) and be
represented by a series of connected straight lines. Overall, PLR methods can be
categorized into two classes: Offline PLR and Online PLR, which is an important
distinction because many data mining applications in real world are inherently
dynamic. In general, the offline PLR methods segment the whole time series
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data sequence, and the online PLR methods segment data sequences based on
the data seen so far.

2.1 Offline PLR

Offline PLR algorithms segment the whole time series data sequence, that is to
say, the whole datasets should be collected before PLR conducting. Although
these Offline PLR methods have different implementation details, they can be
grouped into one of the following two categories.

– Top-Down algorithm based on PLR (PLR-TD) [14]: The main idea of PLR-
TD is considering every possible partitioning of the data sequence and seg-
menting at the best location according to some user-specified threshold. Both
subsegments are then verified to see whether their representation error is
below the threshold, if not, PLR-TD recursively splits the subsegments until
the stopping criterion is met.

– Bottom-Up algorithm based on PLR (PLR-BU) [15]: PLR-BU is the natural
complement to PLR-TD. PLR-BU begins with n − 1 segments, and then it
begins to iteratively merge the lowest cost two adjacent segments until a
stopping criteria is met.

2.2 Online PLR

Onine PLR algorithms mainly concentrate on PLR for streaming time series,
which segment data sequences based on the data seen so far. The upcoming
data sequence will be acquired and piecewisely approximated at the same time
rather than gathering the whole data sequence at the very beginning.

One classic Online PLR algorithm is Slide Windows algorithm based on PLR
(PLR-SW). It works by initializing the first data point of time series as the ini-
tial segmentation point (i.e., the left endpoint) of a segment and trying to find
the right endpoint of the segment by put one more data point into the segment
in each step [16]. Still and all, the main problem of Online PLR methods is
lacking the global view of its offline counterparts, so that the fitting error of seg-
mentation is usually less than satisfactory. To solve this problem, Keogh et al.
[12] introduces an approach in which they hold the online nature of Sliding Win-
dows (SW) and retain the superiority of Bottom-Up (BU) called SWAB (Sliding
Window and Bottom-Up) to improve the fitting precision of SW method. In
order to improve computing efficiency, Liu et al. [17] proposes a new concept
of segmentation criterion called feasible space to reach the farthest segmenting
point of each segment, and then introduces two Online PLR methods, which
are the Feasible Space Window (FSW) method and the Stepwise Feasible Space
Window (SFSW) method. These two methods greatly improve the computing
efficiency of the segmentation, but the fitting error is larger than SWAB in most
cases due to the lack of overall understanding on the temporal characteristics.

According to the comparative analysis of the existing classic Online PLR
algorithms, Online PLR methods are able to do continuous segmentation, but
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the major drawback of them is the fitting precision of representation can not be
guaranteed, compared to the Offline PLR methods.

3 Preliminary

3.1 The Definition of Turning Points

In order to divide the streaming time series T into continuous segments more
reasonably, it is preferable to find those segmenting data points of special sig-
nificance, in other words, the approximate straight lines by connecting those
segmenting data points would reserve the variation trend features of raw time
series. In this paper, those data points denote the variation trends, called the
Turning Points (TPs) will be defined in Definition 1.

Definition 1 (TP ). For a streaming time series TS with n data points,
which is growing continuously, could be expressed as T = {a1, a2, . . . , ai−1,
ai, ai+1 . . . , an}, where 1 ≤ i ≤ n, element ai = (ti, vi) indicates the
recorded value vi arrives at the distinct timestamp ti. Considering the time-
order in T is obvious (i < i + 1), which could be simplified as T =
{v1, v2, . . . , vi−1, vi, vi+1 . . . , vn}. If vi satisfies one of the following two inequa-
tions, vi can be defined as a TP.

vi−1 < vi > vi+1 or vi−1 < vi = vi+1 or vi−1 = vi < vi+1 (1)
vi−1 > vi < vi+1 or vi−1 > vi = vi+1 or vi−1 = vi > vi+1 (2)

According to the above definition, all the TPs in T could be found completely.
In order to make Definition 1 more intuitively, time series T of GunPoint dataset
[18] has been taken for example and shown in Fig. 1. In this Figure, it is not
difficult to find that all the local extreme points, such as TP2, TP3, and the
inflection point (TP5) have already been selected as TPs in T . However, each
TP in T does has different degree of importance in T , in other words, each
TP has a disparate contribution to preserve the local temporal features and
maintain the global temporal trend of T . Therefore, it is necessary to sort all
the TPs based on their own TP importance (TPI) from high to low, preparing
for the subsequent online segmentation. Without loss of generality, according
to the previous research work [19], the traditional vertical distance (VD) and
the mean value of the current T could be utilized to sort the TPI of TPs in T
orderly. The definition of TPI is described as follow.

Definition 2 (TPI). For a streaming time series TS, the mean value of T ,
named MT , could be calculated by the following equation. The vertical distance
(VD) between TPi in T and MT could be defined as the importance of TPi,
denoted as TPIi. When TPi has the maximum VD(MVD), TPi is the most
important TP in T .

MT =
∑N

i=1 vi
N

(3)

TPIi =
√

(vi − MT )2 (4)
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In Fig. 1, all the TPIs of TPs in T have been obtained by calculating VD in
Eq. 4. TP5 with the maximum VD (1.8) could be identified as the most important
TP in T .

Fig. 1. Intuitive example of TPs definition and importance

3.2 The Slope Calculation and Segmentation Criteria

To ensure the fitting precision of FOS, a segmentation criterion need to be intro-
duced for a potential segment, which we call the Maximum Error for Single Point
(ME SP). ME SP is used to evaluate the fitting error of a single data point in
a potential segment. In order to improve the computing efficiency, the FSW
method subsitute the slope calculation (SC) for the calculation of the maximum
vertical distance (MVD) [17]. Similarly, in our algorithm, we adopt slope calcula-
tion to speed up segmentation, and combine with finding TPs. Table 1 illustrates
some definitions of the slope calculation, as follow.

In particular, for a time series T , whose ME SP could be specified by users
and be denoted as σ, where σ > 0.

Table 1. The Definitions of slope calculation

Name Description

line(ai, aj) The straight line connected by point ai and aj

sline(ai, aj) The slope of the straight line connected by point ai and aj

slow(ai, aj) The slope of the straight line connected by point ai and ai − σ

sup(ai, aj) The slope of the straight line connected by point ai and ai + σ

If sline(ai, ak) satisfies the Inequation 5, the MVD between aj and
line(ai, ak) will not exceed the σ(ME SP). According to the segmentation crite-
ria, every time a new data point arrives, we simply compare the slope of the new
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line sline() with slow() and sup() of the current segment and update them to
find maxslow(i:j) (the maximum value of slow()) and minsup(i:j) (the minimum
value of sup()). The corresponding equations are listed in Eqs. 6 and 7.

slow(ai, aj) ≤ sline(ai, ak) ≤ sup(ai, aj) (5)
maxslow(i:j) = maxi<t<jslow(ai, at) (6)

minsup(i:j) = mini<t<jsup(ai, at) (7)

The current segmentation will not end until such condition:maxslow(i:j) >
minsup(i:j) is satisfied, and then to repeat the above operation from the current
segmenting point until the entire streaming time series data has been processed.

4 Algorithm

According to the above definitions, FOS can be subdivided into two major steps,
as follow.

Fig. 2. The major steps of FOS



Feature-based Online Segmentation Algorithm for Streaming Time Series 483

4.1 TP Selection and Evaluation

In the beginning, a buffer named buf should be created for storing the upcoming
steaming time series T , and the setting of buf is same as SWAB [12]. Along with
the data of T is constantly flowing into buf , TP in T could be identified according
to the definition of TP in Sect. 3. After the buf is full, all the TPs in buf would
be sorted based on their own degree of importance from high to low. In order
to illustrate the above process more clearly, the TPs selection and evaluation
on time series in Plane dataset [18] has been taken for example and shown in
Fig. 2. Figure 2(a) and (b) demonstrate this process in detail. The green triangle
points denote all the TPs in current buf and all the TPs have also been sorted in
accordance with their own TPI from high to low and stored into the TP priority
list, named TPPL, in Fig. 2(b).

4.2 Adaptive Stepwise Segmentation by SC and TPS

After the above process, the most important TP (TP1) in TPPL has been iden-
tified in Fig. 2(b). Different from traditional FSW, SFSW and SWAB, which
treat each data point in T equally and subdivide T in buf from the starting
point, FOS performs SC-based forward and backward segmentation operation
from TP1. Due to TP1 is selected from buf by standing on the “global” view, the
corresponding forward and backward segmentation operation will become more
meaningful. As shown in Fig. 2(c), the SC-based forward and backward segmen-
tation operation would start at TP1, the backward segmentation ends at point
a1 and the forward segmentation ends at point ax. To preserve the basic trend
of time series more rationally, the forward segmentation between TP1 and point
ax, as shown in green dotted line in Fig. 2(c), would be refined by measuring the
VD of TP2, TP3 and TP4 mentioned in Sect. 3. After the corresponding calcula-
tion, TP4 would be selected as the final segmenting point in the current forward
segmentation, shown in red dotted line in Fig. 2(c), TP1, TP2, TP3 and TP4
would be removed from TPPL. Subsequently, the current most important TP
(TP11) in TPPL, should be selected and the corresponding forward and back-
ward segmentation would be performed at TP11. So circulates, until TPPL is
empty. The final segmentation in current buf is shown in Fig. 2(d). After the
final segmentation in current buf has been finished completely, except the right-
most subsegment, as shown in red dotted line in Fig. 2(d), all the subsegments
would be removed from buf and the new follow-up data of T would flow into
buf for the next segmentation until the entire T has been processed completely.

According to the final segmentation result in current buf , it is obviously that
all the subsegments are formed by TPs, which could not only preserve the basic
trend of time series more rationally, but also maintain high degree of similarity
between the processed segments and the raw data sequence. The corresponding
comparison and explanation would be given in detail in Sect. 5.
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5 Experiment and Analysis

5.1 Dataset and Evaluation Metrics

In order to perform the experiment, we select some kinds of typical time series
datasets of different fields, including finance, signal processing, industry pro-
vided by UCR Time Series Archive [18], and we also choose some representative
industrial streaming time series including the monitoring data of Dong Fang
Hong satellite (DFHS) from January 2015 to June 2015, which is the Chinese
satellite dataset provided by China Academy of Space Technology, the Hang
Seng Index (HSI) from 4th January 2016 to 30th December 2016 from the Yahoo
Financial web site, and the monitoring data of Jinan municipal steam heating
system(JMSHS) from December 2014 to March 2017.

Since our algorithm choose those important TPs as potential segmenting
points, which can reflect the variation trend of the data sequence, the similar-
ity between approximation representation and the raw data is relatively high.
That is to say, each subsegment could not only reflect the basic trend of time
series intuitively, but also minimize the holistic representation error as much as
possible. Therefore, we use the representation error (RE) based on ME SP to
evaluate the performance of segmentation for streaming time series.

5.2 Comparison with Baseline Methods on Representation Error

In order to compare the corresponding segmentation performance more objec-
tively, we compare FOS with three baseline methods, which are SWAB, FSW
and SFSW, using the identical ME SP. To make the experimental results more
credible, we define two conditions in advance before the experiments.

For one thing, we adopt the Maximum Error Percentage for Single Point
(MEPP) proposed by Liu et al. [17], which can reduce the sensitivities of different
time series datasets to ME SP by choosing appropriate ME SP values for each
dataset. For another, the results of SWAB with MEPP are considered as the
benchmark (i.e., each result of SWAB is set as 1), and then we normalize the
results of other methods according to the benchmark method. Table 2 illustrates
the normalized representation error (NRE) results of four Online PLR methods
on the above listed datasets.

In Table 2, the NRE results of SWAB on the above datasets are set as the
benchmark (1), whose original NRE results are also listed in this Table. By
comparing the specific NRE between FOS and FSW, SFSW on all the above
datasets, it is not difficult to find that the NRE results of FOS are much smaller
than that of FSW and SFSW by its global feature-based segmentation. Through
the comparison between FOS and SWAB on the same datasets, we could also
find that all the NRE results of FOS are smaller that of SWAB on all the datasets
except DFHS. Through the corresponding analysis on DFHS, we find that the
NRE of FOS is affected by the distribution of TPs in some cases. For instance,
due to the concentrated distribution of TPs in DFHS dataset, the relatively
more important TPs would be removed from the TPPL in the previous forward
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Table 2. NRE results of four methods

Dataset SWAB FSW SFSW FOS

Plane 1 (28.83) 2.63 1.89 0.94

Mallat 1 (298.72) 1.56 1.29 0.89

Strawberry 1 (124.09) 0.85 1.05 0.39

OSULeaf 1 (73.67) 2.99 2.04 0.97

Car 1 (113.71) 2.67 1.58 0.57

JMSHS 1 (786.32) 2.43 2.39 0.89

DFHS 1 (8751.86) 2.21 2.17 1.11

HSI 1 (96632.69) 1.64 1.21 0.59

Average 1 2.12 1.70 0.79

(a) NRE results on Plane (b) NRE results on Mal-
lat

(c) NRE results on Straw-
berry

(d) NRE results on
OSULeaf

(e) NRE results on Car (f) NRE results on HSI

Fig. 3. The comparison of NRE on different datasets

and backward segmentation, and the subsequent operations could only perform
the corresponding segmentation based on TPs with a relatively less importance,
which would lead to the NRE result of FOS is bigger than SWAB. Finally,
according to the average NRE results of the above four methods on all the
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datasets, it is obvious that FOS can provide more accurate segmentation than
other three methods in general.

In order to further analyze the segmentation performance of FOS on different
datasets, extensive experiments would be conducted on the above 6 datasets by
varying the MEPP from 20% to 50%. Moreover, In order to distinguish the
differences between the four methods more clearly, the NRE results on these 6
datasets based on MEPP (20%) by SWAB are set as the benchmark (1) and the
corresponding normalized NRE results of the four methods on 6 datasets have
been shown in Fig. 3. In this figure, it is not difficult to find that NRE results on
all the datasets rise gradually along with MEPP increases. Moreover, due to the
lack of a more comprehensive view of segmentation, the NRE results of FSW
and SFSW are much larger than SWAB and FOS in general. Although both
SWAB and FOS perform online segmentation from a global perspective, SWAB
treats all data points equally, while FOS selects the current most important TP
to preform backward and forward segmentation. Therefore, the NRE result of
FOS is much smaller than that of other three methods, in other words, a relative
high similarity between the approximate representation and the raw data could
be maintained by FOS.

6 Conclusion

In this paper, we propose a novel feature-based online segmentation algorithm
(FOS) which reserves the main characteristic of time series and performs well
on diverse streaming time series datasets. The extensive experimental results
demonstrate that FOS can guarantee more accurate approximate representation
of streaming time series. In future, we plan to use FOS for time series retrieval
and anomaly detection.
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