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Abstract
Recent years have witnessed the exponential growth of time series data as the popularity of sensing devices and devel-

opment of IoT techniques; time series classification has been considered as one of the most challenging studies in time

series data mining, attracting great interest over the last two decades. According to the empirical evidences, temporal

representation learning-based time series classification has more superiority of accuracy, efficiency and interpretability as

compared to hundreds of existing time series classification methods. However, due to the high time complexity of feature

process, the performance of these methods has been severely restricted. In this paper, we first presented an efficient

shapelet transformation method to improve the overall efficiency of time series classification, and then, we further

developed a novel enhanced recurrent neural network model for deep representation learning to further improve the

classification accuracy. Experimental results on typical real-world datasets have justified the superiority of our models over

several shallow and deep representation learning competitors.

Keywords Machine learning � Recurrent neural network � Deep representation learning � Turning points evaluation �
Time series classification

1 Introduction

Nowadays, time series classification (TSC) has been

attracting great interest over the past decade. Recent

empirical evidence has demonstrated the advantages of

shapelet-based TSC methods in terms of accuracy, effi-

ciency and interpretability [19, 24]. Shapelet, the specific

representative subsequence in a certain original time series,

does play a pivotal role in TSC. In order to make the

presentation of shapelet more intuitive, a representative

TSC problem is shown in Fig. 1.

As shown in Fig. 1, there are two types of time series:

one is the GUN time series including the shapelet with

green solid line and the other is the NoGUN time series

containing the shapelet with red solid line. With the help of

the above shapelets, whether the boy has a gun in his hand

can be classified by many off-the-shelf general classifica-

tion methods, such as C4.5, 1NN, Native Bayes and Rot

Forest. Moreover, the efficiency of the shapelets-based

TSC method is more than one order of magnitude faster

than the traditional TSC methods based on the entire time

series. Last but not least, the appropriate shapelets can

make the final classification result more interpretable. As

shown in Fig. 1, the shapelet of Gun time series has a clear

upward fluctuation, indicating the action of inserting the

gun into the holster. Similarly, the shapelet of NoGun time

series has an obvious downward fluctuation, which could

be explained by the inertia phenomenon ‘‘overshoot’’

introduced by Lexiang and Eamonn [19].

Although shapelets do have obvious advantages in TSC,

there is still a challenge on selecting these representative

subsequences (shapelets) from the specific time series and

even the whole dataset effectively and efficiently.
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In view of the superiority of shapelets, scholars have

done much work on the shapelet-based TSC methods.

Three recent evolutionary TSC algorithms based on effi-

cient shapelets selection are listed as follows.

– Fast shapelets (FS), which employs an extensional

decision tree mechanism for accelerating the process of

shapelets discovery [26].

– Shapelet transformation (ST), which integrates various

classification strategies (SVM, random forest, etc.) into

a classification voting mechanism for TSC [18], i.e., ST

can incorporate extensive off-the-shelf classification

strategies for improving the final TSC accuracy.

– Learned shapelets (LS), which adopts a heuristic

gradient descent strategy for searching appropriate

shapelets rather than enumerating all possible candi-

dates [11]. Similar with FS, the learning process could

not be separated from the entire classification process,

both of which are different from ST.

According to the above introduction, we further compare

the above three typical TSC methods. The corresponding

analyses results are listed in Table 1. According to this

table, we have the following findings: (1) the accuracy of

FS is lower than these of ST and LS, whose accuracy are

basically same introduced by Anthony et al. [3]. (2) The

efficiency of FS, LS and ST decreases in order [1]. (3) ST

can be integrated by some ensemble algorithms: Collective

Of Transformation Ensembles (COTE) [1], Hierarchical

Vote COTE (Hive-COTE) [15], etc. However, neither LS

nor FS have been adopted by some kinds of ensemble TSC

methods. And (4) Although ST has better accuracy, the

efficiency of ST is slower than other methods, which would

definitely obstruct the popularity of ST for more extensive

application scenarios.

Motivated by the above analysis, in this paper, we

proposed a novel shapelet transformation method to

improve the efficiency of ST. Different from previous

acceleration strategies, our algorithm not only focus on

reducing the time complexity of evaluation, but also cut-

ting down the number of shapelet candidates as much as

possible. The primal shapelets selection strategy in ST is

replaced by our temporal feature-based shapelet generation

to form a novel efficient shapelet transformation (EST) for

TSC to greatly improve the TSC efficiency, while retaining

the corresponding classification accuracy in the same level

of ST.

More importantly, due to the fact that all the above

methods represent the temporal feature in non-deep learn-

ing manner for TSC, which are named as shallow repre-

sentation learning methods in this paper. Accordingly, we

presented a novel deep representation learning method for

TSC. In particular, we designed a TempOral

Fig. 1 Shapelet-based time series classification on GunPoint

Table 1 Comprehensive

comparison on FS, ST and LS
Method Train timea Train space Accuracy (ranks)b Combinableness

FS Oðnm2Þ Oðnm2Þ 2.7419 No

ST Oðn2m4Þ O(kn) 1.8548 COTE, Hive-COTE

LS Oðen2m2k2Þ Oðn2m2k2Þ 1.4032 No

aIn this table, n is the number of time series, m is the length of time series, k is number of shapelets, e is the
maximum number of iterations

bThe average ranks are taken from Anthony et al. [3]
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Representation RecurrEnt Neural NeTwork, dubbed as

TORRENT, for TSC. TORRENT is an enhanced bidirec-

tion LSTM model, which jointly considers the local feature

and the corresponding important context information to

complete more accurate representation learning for sig-

nificantly promoting TSC accuracy. The main contribu-

tions of this work are threefold:

1. we presented a novel efficient shapelet transformation

(EST), which utilizes turning points (TPs) to identify

the main temporal features and the overall trend of the

sequence for representation learning, while improving

the efficiency of TSC.

2. we developed a TempOral Representation RecurrEnt

Neural NeTwork (TORRENT) for temporal feature

representation learning from scratch. TORRENT can

leverage crucial context information to strengthen the

feature representation, while boosting the accuracy of

TSC.

3. Extensive empirical results on a large number of

benchmark time series datasets not only demonstrate

EST is more efficient than the main stream shallow

representation learning methods, but also verify

TORRENT has higher classification accuracy than

other deep representation learning methods.

The remainder of this paper is structured as follows.

Firstly, an overview of related work is provided in Sect. 2.

Secondly, our two TSC methods EST and TORRENT are

introduced in details in Sect. 3. Thirdly, comparison

experiment results and analyses are presented in Sect. 4.

Finally, our conclusions are given in Sect. 5.

2 Related work

2.1 Shallow representation learning methods
for TSC

Temporal feature, especially shapelet, based representation

learning has been formally proposed for TSC by Lexiang

and Eamonn [19]. After that, a large number of shallow

representation methods have been proposed, such as: FS

and its variants [20, 22, 26], ST and its variants [14, 18],

LS and its variants [11, 21]. Considering ST is not only one

of the best TSC algorithms in terms of classification

accuracy, but also has a broader range of application sce-

narios, we want to utilize some appropriate acceleration

strategies to improve the shapelet selection efficiency of

ST, while ensuring the corresponding classification accu-

racy is in the same level with that of ST. Lexiang and

Eamonn [20] proposed two early abandon and entropy

pruning-based optimal methods for time series classifica-

tion . Almost at the same time, Mueen et al. utilized a

search space pruning strategy to accelerate the shapelet

generation based on the triangle inequality. Considering the

above three methods neglect to reduce redundant shapelet

candidates, Grabocka et al. [12] presented a scalable sha-

pelet discovery (SD) method to utilize clustering-based

pruning strategy for shapelet candidate reduction. Analo-

gously, Isak et al. [13] and Cun et al. [7] separately

adopted random shapelet forests and temporal important

point evaluation [31] strategies for drastically reducing the

redundant number of candidates. Yupeng et al. [32] pro-

posed multi-resolution representation method for shapelet

generation and further combined existing general classifi-

cation models, i.e., rotation forest, support vector machi-

nes, etc.[4, 5] for TSC.

2.2 Deep representation learning methods
for TSC

Although much progress has been made by the above

methods, they all complete TSC in some kinds of shallow

representation manners, i.e., they ignored the possible

contribution of deep neural networks (DNNs) for TSC,

especially DNNs have already achieved great success in

representation learning. To the best of our knowledge,

there do exist works based on DNNs for TSC; however,

these works also have their own problems. Zhiguang

et al. [34] separately adopted a multilayer perceptron

(MLP), fully convolutional neural network (FCN) and

residual network (ResNet) to complete temporal feature

representation learning and further TSC. However, relying

on a single deep learning model alone, it is impossible to

obtain a relatively satisfactory TSC effect. Sangdi and

George [25] developed a group-constrained convolutional

recurrent neural network (GCRNN), which combines a

convolutional network model with a recurrent network

component for temporal feature embedding-based TSC.

Subsequently, Fazle et al. [10] utilized FCN network [6] as

feature representation sub-module for feature encoding and

adopted bidirectional long short-term memory network

(Bi-LSTM) for TSC.

Although promising classification accuracy has been

achieved, these deep representation learning methods do

ignore the crucial temporal trends and corresponding con-

textual information in the original time series, thus fail to

achieve more comprehensive feature representation and

accurate classification. Therefore, in this paper, we present

a novel temporal representation recurrent neural network to

leverage crucial context information to strengthen the

feature representation, while boosting the accuracy of TSC.

Neural Computing and Applications (2021) 33:3169–3182 3171

123



3 Temporal feature-based classification
models

In this section, we first give the relevant definitions, and

then, we describe the turning points-based shapelet selec-

tion strategy for EST. Subsequently, we present deep rep-

resentation learning-based TORRENT in details.

3.1 Problem formulation

Given a time series dataset D, containing N time series,

expressed as

D ¼ fðT1; L1Þ; ðT1;L1Þ; . . .; ðTi;LiÞ; . . .; ðTN ; LNÞg 1� i�N

ð1Þ

where Ti denotes the ith time series of D, expressed as

Ti ¼ fvi1; vi2; . . .; vij; . . .; vimg 1� j�m ð2Þ

where vij denotes the jth point of Ti. Besides, Li denotes the

corresponding one-hot label vector. Without loss of gen-

erality, supposing there are K classes of D, Li is a vector

with K element, as

Li ¼ fli1; li2; . . .; lik; . . .; liKg 1� k�K ð3Þ

where each element lik 2 f0; 1g. If lik ¼ 1 indicates Ti
belongs to the kth class and 0 otherwise.

Definition 1 TSC aims to learn a classifier C on D to

predict the specific class label Li of given time series Ti,

i.e., mapping all the inputs into corresponding class label-

based probability distributions.

Li  CðTiÞ: ð4Þ

Empirical evidence implied that instead of the entire Ti,

a certain subsequence Sij of Ti has distinct temporal sig-

nificance to represent a certain class Li can be named as

shapelet in Yupeng et al. [32]. Accordingly, it is advisable

for us to identify the significant parts according to their

own temporal features. The temporal features are con-

structed by a sequence of data points and each point

actually has the different influence on the variation

trend [29]. In our paper, we focus on some data points

indicating the changing trend of time series, dubbed as

turning points (TPs).

Definition 2 For a certain time series Ti. If vk meets one of

the following two inequations, it can be defined as TP in Ti.

vk�1\vk [ vkþ1 or vk�1\vk ¼ vkþ1 or vk�1 ¼ vk\vkþ1

vk�1 [ vk\vkþ1 or vk�1 [ vk ¼ vkþ1 or vk�1 ¼ vk [ vkþ1:

ð5Þ

According to Definition 2, the main temporal features in

the whole time series could be identified completely. More

concretely, an instance for TPs identification on Ti of

‘‘Symbols’’ from TSC benchmark dataset [2] has been

given and is shown in Fig. 2.

As shown in Fig. 2a, with the help of Definition 2, 31

TPs in Ti have been identified completely. However, it is

obvious that most of TPs are distributed at the peaks and

troughs of Ti, i.e., TPs do reflect corresponding importance

temporal trends. Therefore, TPs should be evaluated and

sorted orderly. After the jth turning point TPj has been

identified, its importance can be evaluated based on the

sum of fitting errors, named SumFE, between its two

adjacent TPs (TPj�1;TPjþ1). Specially, the evaluation of

TPj could be described as follows. Firstly, the left adjacent

TPj�1 and right adjacent TPjþ1 would form a straight line

named TPLine. Secondly, the fitting error of each raw data

point vk, in the range of ðTPj�1;TPjþ1Þ, would be calcu-

lated, respectively, which could be obtained by the vertical

distance [30] from vk to TPLine. The value and timestamp

of TPj�1, TPj and TPjþ1 could be denoted as (vtpj�1 , ttpj�1 ),

(vtpj , ttpj) and (vtpjþ1 , ttpjþ1 ), respectively. Subsequently, the

fitting error of vk could be obtained through vertical dis-

tance calculating from vk to TPLine, named FEk in Eq. (6).

Finally, the importance of TPj, named ITPj, could be

measured by the accumulated fitting errors in the range of

(ttpj�1 , ttpjþ1 ), as shown in Eq. (7).

In particular, the importance evaluation instance of v115
could be divided into the following three steps in Fig. 2b.

(1) The left adjacent v63 and right adjacent v154 would form

a straight line as a green dotted line in Fig. 2b. (2) The

fitting error of each raw data point vk, FEk, in the range of

(63, 154), would be calculated by (6). And (3) the impor-

tance of v115, can be calculated as ITP115 ¼ R154
k¼63ðFEkÞ by

(7).

FEk ¼ vtpj�1 þ
ðk � ttpj�1Þ � ðvtpjþ1 � vtpj�1Þ

ðttpjþ1 � ttpj�1Þ
� vk

�
�
�
�
�

�
�
�
�
�

ttpj�1\k\ttpjþ1

ð6Þ

ITPj ¼ R
ttpjþ1
k¼ttpj�1

ðFEkÞ: ð7Þ

According to the above instance, the importance of all the

TPs in Ti could be evaluated completely. There is still one

thing should be noted that the beginning point of Ti would

be used to evaluate the first TP, similarly the ending point
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of Ti would be used to evaluate the last TP in Fig. 2a. The

TPLine in the first TP v2 evaluation is connected from v1
(the beginning point of Ti) to v4 (right adjacent TP of v2)

and the TPLine in the last TP v386 evaluation is connected

from v349 (left adjacent TP of v386) to v398 (the ending point

of Ti).

After the importance of all TPs in a certain time series

has been evaluated completely, TPs could be stored in a

priority queue according to the descending order of their

own importance, as shown in Fig. 2c. Subsequently, a

certain number of TPs, based on the specific data com-

pression ratio, would be selected for shapelets generation

and the corresponding definition is listed as follows.

Definition 3 After Num TPs in Ti have already been sorted

in the descending order of their importance, the current

data compression ratio (DCR), denoted as e can be calcu-

lated in (8).

CurNum ¼ bNum � ec 0� e� 100%; ð8Þ

where CurNum refers to the current number of TPs.

According to Definition 3, supposing the current DCR

(e) is set as 30%, the 9 (b31 � 30%c) TPs in T16 have been

selected and rearranged based on their original temporal

order in Fig. 2c.

In what follows, two temporal feature-based represen-

tation learning models for TSC are introduced one by one.

3.2 Efficient shapelet transformation for TSC

The main processing steps of ST can be summarized as: (1)

shapelet quality measurement setting, (2) shapelet genera-

tion and selection and (3) data transformation, respectively.

In this paper, we proposed an efficient ST method (EST) to

only replace the second step of original ST and remain the

other two steps for efficient TSC.

Having obtained all the TPs in a certain time series Ti,

we use them to produce the initial shapelet candidates. The

subsequence could be selected as shapelet candidate with

the following two requirements: (1) the begin point should

be TP or the beginning point of Ti. (2) the end point should

be TP or the ending point of Ti. According to these

requirements, two subsequences in Ti should be selected as

shapelet candidates, which describe the obvious temporal

trends of Ti.

Specially, considering that the total number of data

points for producing shapelets is 11 (9 TPs and 2 end-

points) in Fig. 2, the number of shapelet candidates is no

more than 110 (11*10) by ESS, which is much less than

that of the original Ti 158,006 (398*397) with 398 data

points. Analogously, the number of corresponding shape-

lets generated from the entire D can be reduced dramati-

cally. Subsequently, we can use information gain [20] to

select a certain number (L) of candidates as final shapelets

for further data transformation and classification. The

Fig. 2 TP identification on TSi
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subsequent comparison experiments between our EST and

other competitors are introduced in Sect. 4.

In light of this, assuming that the number of Ti in D is n,

the length of Ti remains m, the average selected number of

TPs in Ti is p, the time complexity of final shapelet

selection could be analyzed as follows: (1) considering the

number of TPs is no more than the length of time series m,

the time complexity of TPs identification is O(m) and the

time complexity of TPs evaluation on Ti and the entire D is

no worse than Oðp � mÞ and Oðn � p � mÞ, respectively. (2)
The time complexity of shapelet candidates generation in

each Ti is Oðp2Þ, and the overall time complexity of D is no

worse than Oðn � p2Þ. And (3) measuring the quality of one

candidate requires the corresponding comparisons with n

time series in D, whose time complexity is

Oðn � p2 � n � m � mÞ. Hence, the overall time complexity

of final shapelets selection is

Oðn � p � mþ n � p2 � n � m � mÞ, i.e., Oðn2 � p2 � m2Þ,
which is less than the original time complexity Oðn2 � m4Þ
of ST.

3.3 Deep representation learning for TSC

According to the above analysis, shapelets do reflect the

main temporal features of a certain time series. Moreover,

TP identification and evaluation strategies can be utilized

adaptively for producing the corresponding shapelets on

the whole datasets. Consequently, in this paper, we develop

a TORRENT, for TSC. The framework of our proposed

model is illustrated in Fig. 3.

Our proposed TORRENT model comprises the follow-

ing three components: (1) temporal trend extraction, which

can simultaneously acquire the basic and important trends

in the given time series Ti; (2) temporal feature encoding,

which can encode the discriminative temporal trends into

corresponding features; (3) comprehensive representation

learning for predicting the appropriate class label for Ti.

3.3.1 Temporal trend extraction

Given a certain time series Ti with l TPs, we first conduct

TP identification and evaluation through Definition. 2 to

sort l TPs according to the descending order of their own

importance. And then we select CurNum TPs (l � eþ 2)

including 2 endpoints (vj1; v
j
m) in Ti based on a predefined

DCR e. As shown in Fig. 3, there are 6 TPs to identify the

corresponding important temporal trends in Ti. Although

TPs do reflect the main temporal information of Ti based

on the corresponding time series domain knowledge, con-

sidering the different types of time series, it is relatively

one-sided to rely on human experience-based shapelets for

TSC, in other words, the widely varying latent features in

time series are also important criteria for TSC. Conse-

quently, we utilize sliding window with length k and

overlap rate a [33], to subdivide the entire Ti into

CurNumþ 1 sequences, expressed as

Si ¼ fsi1; si2; . . .; sij; . . .; siMg, where sij denotes the jth seg-

ment of Ti.

3.3.2 Temporal feature encoding

To model time series Ti, we proposed a novel bidirectional

enhanced LSTM (Bi-ELSTM) to encode the temporal

features of Si. Although traditional Bi-LSTM is able to

memorize the main temporal information of Si for Ti
encoding, it is insufficient to capture crucial temporal

trends in long time series. To tackle the aforementioned

problem, it is necessary to heighten the memorization of

crucial temporal trends with contextual information. Spe-

cially, if sij of Si contains TPk, the segments es�j , involving

TPk�1 and TPkþ1, in Si are considered as the corresponding

contextual information of sij, Bidirectional Enhanced

LSTM (Bi-ELSTM) combines sij and es
�
j together for feature

encoding.

In Fig. 3, Si, expressed as the set of column vectors, is to

input into Bi-ELSTM according to its own temporal order.

Moreover, the segments sij�1 and sijþ1 of sij, containing

TPk�1 and TPkþ1, respectively, are also considered as the

corresponding pre-context and post-context features to

input into Bi-ELSTM for feature encoding. Specially, if the

pre-context and post-context information of the specific sij
involve multiple segments, we adopted mean pooling-

based dimension reduction strategy [28, 35] to obtain the

comprehensive context representation of sij. The detail of

ELSTM unit is also shown in Fig. 3.

Formally, we formulate the forward ELSTM as follows,
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Fig. 3 Schematic illustration of

our proposed TORRENT
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fi
!

j ¼ rðWiss
i
j þWih h

!
j�1 þ biÞ;

ff
!

j ¼ rðWfss
i
j þWfh h

!
j�1 þ bf Þ;

fo
!

j ¼ rðWoss
i
j þWoh h

!
j�1 þ boutÞ;

fu
!

j ¼ tanhðWuss
i
j þWuh h

!
j�1 þ buÞ;

bc
�!

j ¼ fi
!

j � fu
!

j þ ff
!

j � bc
�!

j�1;

ei
!�

j ¼ rðW�
is
es�j þW�

ih h
!� þ b�i Þ;

ef
!�

j ¼ rðW�
fx
es�j þW�

fhh
�!þ b�f Þ;

eo!�j ¼ rðW�
os
es�j þW�

oh h
!� þ b�outÞ;

eu�!�j ¼ tanhðW�
us
es�j þW�

uh h
!� þ b�uÞ;

ec!�j ¼ ei
!�

j � eu�!�j þ ef
!�

j � ec!�;

eh
�!

j ¼ bo
�!

j � tanhð bc�!
jÞ þ eo!�j � tanhðec!�j Þ;

8

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð9Þ

where sij is the temporal segment produced by sliding

window at the time step j, fij
!
, ffj
!
, foj
�!

, h
!

j�1 denote the jth

forward feature embedding of input gate, forget gate, out-

put gate and memory cell state, respectively. bc
!

j�1 refers to

jth the basic hidden state feature. r denotes the logistic

sigmoid function; and � denotes element wise multipli-

cation. Moreover, eh
!�

and ec!� are the enhanced memory

cell state and hidden state at the time step j, combining with

the current context information. Subsequently, we obtain

forward representations

R!i ¼ ½eh
!

i;1; eh
!

i;2; . . .; eh
!

i;j; . . .; eh
!

i;M�. Similarly, we employ

backward ELSTM on Si for the corresponding feature

encoding, R i ¼ ½eh
 

i;1; eh
 

i;2; . . .; eh
 

i;j; . . .; eh
 

i;M�.
Subsequently, we concatenate the forward R!i and

backward R i together to obtain the bidirectional repre-

sentation, as
$R i ¼ ½

$
eh i;1; . . .;

$
eh i;j; . . .;

$
eh i;M � 2 Rdh�M ,

where dh is the dimension of each hidden state in Ri.

Obviously, our ELSTM layer can simultaneously leverage

crucial context information to enhance the memorization of

temporal trends and further strengthen the feature

encoding.

3.3.3 Temporal representation learning

We utilize attention strategy to further obtain the improved

representation of
$R i based on different attentive scores.

Specifically, the last hidden state
$
eh i;M is selected to

measure with each encoder hidden state
$
eh i;j 2

$R i for

attentive score calculation, expressed as

rij ¼ tanhðWrh
$
eh i;j þ Urh

$
eh i;MÞ ð10Þ

where Wrh and Urh are parameters. Subsequently, all the

attentive scores rijs are normalized to further form atten-

tion-based representation for
$R i by weighted sum in

Eq. 11:

ci;j ¼
expðrijÞ

PM
j¼1 expðrijÞ

;

fhi;j ¼
XM

t¼1
ci;j
$
eh i;j;

ð11Þ

where fhi;j is the attention-based representation of jth

encoder hidden state. Consequently, the attention-based

representation on
$R i can be expressed as

Hi ¼ ½fhi;1 ; . . .; fhi;j ; . . .; ghi;M �.
Thereafter, we feed Hi into a multi-layer perception

(MLP) network with Z layers to complete the classification

on Ti, as follows,

F 1
Hi
¼ r1r ðW1

rHi þ g1r Þ;

..

.

F z
Hi
¼ rzrðWz

rF z�1
Hi
þ gzrÞ;

..

.

F Z
Hi
¼ rZr ðWZ

rF Z�1
Hi
þ gZr Þ;

8

>>>>>>>>><

>>>>>>>>>:

ð12Þ

where Wz
r, g

z
r and F z

Ri
, respectively, denote the weight

matrix, bias vector and output of the zth hidden layers, rzr is
the Randomized Leaky Rectified Linear Units function

[16], and the output of the Zth layer of MLP F Z
Hi

is the final

representation of Ti, expressed as bFHi
with K elements.

Subsequently, we use softmax to normalize bFHi
into cor-

responding class probability distribution PðKjTiÞ.

PðKjTiÞ ¼ softmaxð bFHi
Þ; ð13Þ

where K refers to the number of class label, and PðKjTiÞ
represents the probability distribution of classifying the ith

time series (Ti) into K class labels.

Considering our goal aims to maximize the classification

prediction probability on D, we optimized the negative log-

likelihood loss function as follows:

KðhÞ ¼ � 1

N

XN

i¼1
log LiPðKjTiÞ; ð14Þ

where Li is the 0-1 vector of K class labels on Ti; N denotes

the total number of time series in dataset D; h is the

parameter of TORRENT.
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4 Experiments and evaluation

We have conducted a set of experiments to evaluate the

classification performance of our EST and TORRENT

compared to other baseline competitors. We begin with the

experimental settings and then analyze the corresponding

experimental results.

4.1 Experimental settings

We conduct extensive comparison experiments on 10

typical datasets [2] and 3 our collected network traffic flow

time series datasets of Shandong University, dubbed as

Inflow, Outflow and Totalflow. Moreover, in the following

comparison experiments, on the one hand, as for EST, the

number of shapelets (L) is set at the half number of time

series (N) in D, i.e., L ¼ N=2, which is exactly the same as

original ST. The e in our experiments is set as 30% initially

and the corresponding analysis on the varying e is also

given later. On the other hand, as for TORRENT, the

hidden state size and drop ratio [8, 17] are set to 200 and

0.8, respectively. The learning rate is set to 0.001. More-

over, we empirically set the maximum number of epochs as

1000 to ensure the convergence. Besides, all the deep

learning comparison experiments are conducted over a

computer equipped with Ubuntu 16.04.6 LTS, Intel Xeon

CPU E5-2620, 128 GB Memory and NVIDIA TITAN Xp

GPU.

4.2 Comparison on shallow representation
learning for TSC

In order to fully evaluate the performance of our methods,

4 evolutionary time series classification algorithms based

on shapelets mentioned above: ST [18], COTE [1], LS

[11], FS [26] have been chosen as the baseline methods.

Moreover, there are 4 shapelet-based TSC acceleration

algorithms: SD [12], RS [27], gRSF [13], SALSA-R [9]

have also been selected as the baseline methods in our

experiments.

4.2.1 Comparison on classification accuracy

In the following shallow learning comparison experiments,

the accuracy results of gRSF are obtained by utilizing the

default parameters as well as the open source tools shared

by Isak et al. [13], that of SALSA-R are obtained by

sampling 30% subsequences as candidates for classifica-

tion. The experimental accuracy results are shown in

Table 2.

Obviously, the classification accuracy of EST is better

than other 4 acceleration methods. As for the comparison

with 3 primal TSC methods, due to the shapelet selection

only rely on TP evaluation, some latent features of the

given time series may not be captured for TSC. The

accuracy of EST is lower than ST and significantly higher

than LS and FS. Moreover, considering that the average

accuracy difference between EST and ST is less than 0.05,

the accuracy of ST and EST is basically in the same level.

4.2.2 Comparison experiments on shapelets generation
efficiency

According to the above analysis, the main difference

between EST and ST exists in shapelet generation and

selection; therefore, the specific processing efficiency of

them is further analyzed. Besides, according to the above

accuracy rankings, 2 methods with relatively high accuracy

(LS, gRSF) are selected to further analyze the efficiency of

shapelets selection. Considering FS is the fastest in three

primal methods mentioned in Table 1, the running time for

shapelets selection in FS is also concerned in our com-

parison experiments. Moreover, due to the fact that the

running time for the completed classification by the primal

methods is too long, e.g., it takes more than 7 days to

complete the entire classification on the above datasets by

ST, LS, etc. Accordingly, in this subsection, the compar-

ison experiments on running time only focus on the elapsed

time for shapelets generation and selection. last but not

least, due to the selection process in gRSF is addressed in

parallel, the CPU Time would be considered as the running

time in gRSF to complete shapelets selection. The results

of running time on shapelets selection are shown in

Table 3.

According to Table 3, it is no difficult to find that EST is

not only significantly faster than the acceleration method

gRSF by nearly 30-fold, but also faster than FS and ST by

one and three orders of magnitude, respectively.

In consequence, based on the above analyses on accu-

racy and running time, we can conclude that the EST can

greatly improve the efficiency of the shapelet transform-

based TSC methods, while retaining relatively high clas-

sification accuracy.

4.2.3 Effect of e on EST

To further analysis the different DCR effect on the running

time and accuracy of EST, e would be varied from 10 to

50% on the two datasets (Inflow, Outflow), the corre-

sponding results are shown in Fig. 4.

As e increases from 10 to 50%, we can find that the

running time of EST continues to rise in Fig. 4. The reason

is that the increase in e means more TPs are chose for

shapelets selection, which undoubtedly increase the cor-

responding time overhead. As for accuracy, It can also be
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found in Fig. 4 that the corresponding accuracies on both

of the datasets have all experienced continuous rise,

remained stable and slight decline, attributed to the fol-

lowing reasons. In the beginning, due to the relatively

small e, few TPs (relatively few data features) are used for

shapelets selection and subsequent classification, so the

accuracy of EST is also comparatively low. Along with the

continues increase in e, the increasing numbers of TPs

(more temporal features) continuously improve the classi-

fication accuracy in a relatively high level. Subsequently,

Table 2 Shallow representation

learning comparison on

classification accuracy

Dataset Primal methods Acceleration methods

ST LS FS gRSF SALSA-R SD RS EST

ChlorineConcentration 0.682 0.586 0.566 0.658 0.671 0.553 0.572 0.717

Coffee 0.995 0.998 0.917 0.964 0.960 0.961 0.769 1.000

DiatomSizeReduction 0.911 0.927 0.873 0.779 0.769 0.896 0.774 0.869

Inflow 0.778 0.727 0.551 0.736 0.722 0.581 0.521 0.767

ItalyPowerDemand 0.953 0.960 0.917 0.944 0.951 0.920 0.924 0.955

Light7 0.724 0.765 0.644 0.726 0.695 0.652 0.635 0.678

MedImgs 0.691 0.704 0.609 0.697 0.686 0.676 0.529 0.699

MoteStrain 0.882 0.876 0.793 0.952 0.854 0.783 0.815 0.904

Outflow 0.766 0.713 0.564 0.743 0.731 0.578 0.530 0.748

Symbols 0.862 0.919 0.908 0.755 0.864 0.865 0.795 0.941

Totalflow 0.779 0.738 0.560 0.739 0.728 0.586 0.527 0.759

Trace 1.000 0.996 0.998 1.000 1.000 0.965 0.934 0.980

TwoLeadECG 0.984 0.994 0.920 0.991 0.958 0.867 0.914 0.982

Ranking 1 3 7 4 5 6 8 2

Table 3 Running time on

shapelet selection (s)
Dataset ST LS FS gRSF EST

ChlorineConcentration 21,758.6 6172.5 170.7 618.6 2.9

Coffee 530.8 230.6 6.2 5.8 0.1

DiatomSizeReduction 310.9 769.1 7.0 11.5 0.2

Light7 13,569.8 14,465.9 102.9 113.4 9.2

MoteStrain 2.1 20.4 0.3 1.7 0.01

Symbols 4386.1 4623.7 35.7 38.2 4.1

Trace 6832.7 5251.31 48.2 77.8 15.8

Average time 6770.14 4504.79 53.00 123.86 4.62

Fig. 4 Parameter analyses on e of EST
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as e increases further, more but less important TPs are

chosen to bury the main temporal feature into plenty of the

trivial details and incur the corresponding decline of

accuracy. Finally, according to the verification on the

above experimental results, e is set within the range of 30–

40% is relatively reasonable. To better balance efficiency

and accuracy, e is set to 30% in the comparison

experiments.

4.3 Comparison on deep representation learning
for TSC

Analogously, we selected 4 shallow learning methods: ST

in Jon et al. [18], COTE in Anthony et al. [1], LS in

Grabocka et al. [11] and FS in Thanawin and Eamonn [26]

as well as 3 deep learning methods: MLP [34], GCRNN

[25] and LSTM-FCN [10] as the baselines in our com-

parison experiments. The corresponding results are shown

in Table 4.

4.3.1 Comparison on classification accuracy

As shown in Table 4, the classification accuracy of COTE

is higher than other 3 shallow learning methods (ST, LS

and FS) but slightly lower than MLP. Moreover, we can

find the classification accuracy of GCRNN basically better

than COTE, which verifies that the fully convolutional

network based on deep representation learning is indeed

effective in improving the accuracy of classification.

However, regarding GCRNN neglects the intrinsic tem-

poral features of time series, its accuracy is lower than that

of LSTM-FCN. Finally, compared to other baselines,

TORRENT can not only learn the local temporal features

in a certain time series, but also leverage crucial context

information to enhance the memorization of temporal

trends, while improving the accuracy of TSC.

4.3.2 Effect of e and k for TORRENT

Subsequently, to further analysis the different e and k
effects on the corresponding accuracy of TORRENT, we

first set k to 20% and vary e from 10 to 50% on the two

datasets (Inflow, Outflow), and then, we set e to 30% and

vary k from 10 to 50% on the same datasets. Although the

other three deep representation learning methods are not

affected by parameters e and k, GCRNN adopts the CNN

based feature embedding in accordance with the original

temporal order [25], LSTM-FCN comprehensively pro-

cesses the entire time series in 1 time step [10]. We still

added them together as constant references to clearly dis-

play the changing trends of TORRENT.

In Fig. 5, with the increase in e (from 10 to 80%), in the

beginning, TORRENT cannot capture main temporal fea-

tures for representation learning and subsequent classifying

based on relatively few TPs, so the accuracy of TORRENT

is also comparatively low. Along with the continues

increase in e, the increasing numbers of TPs (more data

features) sustained improve the classification accuracy in a

relatively high level. Subsequently, as e increases further,

more but less important TPs would be chosen to add some

noise information and several trivial temporal fluctuations,

which undoubtedly incur the corresponding decline of

accuracy. Analogously, with the increase in k (from 20 to

60%), the corresponding accuracy results of TORRENT on

these two datasets have all experienced corresponding

rising, maintenance and declining. Compared to the above

Table 4 Deep representation

learning comparison on

classification accuracy

Dataset Shallow learning methods Deep learning methods

COTE ST LS FS MLP GCRNN LSTM-FCN TORRENT

ChlorineConcentration 0.736 0.682 0.586 0.566 0.867 0.859 0.839 0.875

Coffee 1.000 0.995 0.995 0.917 1.000 1.000 1.000 0.999

DiatomSizeReduction 0.929 0.911 0.927 0.873 0.967 0.965 0.967 0.969

Inflow 0.801 0.778 0.727 0.551 0.800 0.809 0.811 0.829

ItalyPowerDemand 0.970 0.953 0.960 0.917 0.969 0.966 0.963 0.971

Light7 0.799 0.724 0.765 0.644 0.863 0.865 0.835 0.868

MedImgs 0.785 0.691 0.704 0.609 0.792 0.803 0.801 0.799

MoteStrain 0.902 0.882 0.876 0.793 0.952 0.949 0.939 0.957

Outflow 0.793 0.766 0.713 0.564 0.785 0.799 0.805 0.810

Symbols 0.953 0.862 0.919 0.908 0.967 0.955 0.984 0.981

Totalflow 0.787 0.779 0.738 0.560 0.792 0.803 0.811 0.808

Trace 1.000 1.000 0.996 0.998 1.000 1.000 0.989 1.000

TwoLeadECG 0.983 0.984 0.994 0.920 1.000 0.983 0.999 0.999

Ranking 5 6 7 8 4 3 2 1
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results on k, the changes on e are significantly dramatic,

which reveals that important temporal trends have more

pronounced effects on classification accuracy.

4.3.3 Attention visualization

In this subsection, we visualize attention mechanism of

TORRENT for TSC. Accordingly, we randomly select the

attention scores-based classification results on Inflow and

Totalflow dataset. The color depth reflects to the corre-

sponding attentive weights in Eq. 10, concretely, deeper

color indicates higher attentive score and vice versa.

As shown in Fig. 6, two interesting observations can be

found. For one thing, in the same dataset, the attention

scores on time series belonging to the identical classifica-

tion set are relatively close, while the attention scores on

time series from different classification sets differ greatly.

This demonstrates that our proposed TORRENT can

effectively capture and learn the corresponding hidden

temporal features from different time series for TSC. For

another, in the same class set, segments of the given time

series with higher attention weights (darker colors) are also

relatively concentrated, which not only verifies TORRENT

can automatically learn important temporal features in the

given time series, but also shows the rationality of tradi-

tional shapelet-based TSC methods, i.e., shapelet instead of

the entire time series can reflect the main feature of class

membership to some extent.

Fig. 5 Parameter analyses on e and k of TORRENT
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5 Conclusion

In this paper, we propose a novel shapelet transformation

model EST, which utilizes turning points-based represen-

tation learning, to promote the efficiency of TSC. More-

over, we develop a deep representation learning network

TORRENT, which can leverage crucial context informa-

tion to strengthen the capability of representation learning,

while boosting the accuracy of TSC. The extensive

experimental results demonstrate the necessity and cor-

rectness of our proposed models. Based upon this study,

our future work will be carried out along 3 promising

directions: (1) we plan to integrate EST into incremental

learning strategy for streaming time series classification,

(2) we intend to utilize the latent feature encoding of

TORRENT for time series anomaly detection [23], and (3)

we desire to adopt TORRENT as a useful sub-model for

the audio representation learning for multimedia data

mining.
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