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Deep Discrete Hashing for Label
Distribution Learning

Zhen Zhang, Lei Zhu , Senior Member, IEEE, Yaping Li, and Yang Xu

Abstract—Label Distribution Learning (LDL) can better de-
scribe the real-world data by learning a set of label distributions
instead of discrete binary labels. Particularly, hashing-based LDL
has achieved promising performance due to its desirable advan-
tages of fast similarity computation and extremely low storage cost.
However, existing hashing-based LDL methods are still shallow
learning methods, which cannot deeply capture the implicit data
semantics, and meanwhile fail to fully model the semantic data
relations. In this letter, we propose an effective and efficient Deep
Discrete Hashing for Label Distribution Learning (DDH-LDL)
method, which develops the first deep hashing framework for
LDL. Specifically, DDH-LDL captures implicit semantic informa-
tion by multi-layer non-linear transformation, and simultaneously
preserves the modeled semantic relations of instances into hash
codes via semantic message aggregation on Graph Convolutional
Network (GCN). Furthermore, we elaborately design a discrete
optimization module that is seamlessly integrated into our proposed
deep hashing framework to reduce the binary quantization errors.
Experiments on several widely tested datasets verify the superiority
of the proposed method on both learning accuracy and efficiency.

Index Terms—Label distribution learning, deep hashing,
discrete optimization.

I. INTRODUCTION

D IFFERENT from multi-label learning [1]–[5], Label Dis-
tribution Learning (LDL) [6] is a new label learning

paradigm, which assumes the labels of the instances are com-
posed of a group of real-value distributions. Thus, the labels
obtained by LDL can represent the data more accurately and
can better characterize the data form of the real world.

Although LDL has desirable advantages [7], most existing
methods suffer from an important problem that the training
time increases rapidly with the increase of training data. To
alleviate this problem, significant efforts have been made in
the literature. Notably, Adaptation Algorithm of k-Nearest
Neighbor (AA-kNN) is proposed in [6] to predict the label
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distributions by nearest neighbor search. Hence, AA-kNN
is not scalable since it relies heavily on the quality and
the dimensions of the instance features. Recently, hashing
technology [8]–[11] has been developed with the advantage
of high similarity computation efficiency and extremely low
storage cost. Since hashing technology is suitable for large-scale
LDL, several hashing-based LDL methods have been proposed,
such as Binary Coding based Label Distribution Learning
(BC-LDL) [12] and Discrete Binary Coding based Label
Distribution Learning (DBC-LDL) [13]. They basically follow
the three-step learning paradigm: 1) Project the instance features
into the Hamming space. 2) Search the k most similar instances
in the database. 3) Calculate the label distribution of the query
instance according to the search results. It has been reported
that BC-LDL [12] and DBC-LDL [13] have obtained promising
label learning results and significant efficiency improvements.
However, existing hashing-based LDL methods still achieve
sub-optimal performance due to two problems: 1) They are
shallow learning methods that conduct the learning process on
hand-crafted features and thus cannot deeply capture the implicit
data semantics. 2) They simply construct a similarity matrix
with labels to preserve the semantic relations of instances, which
cannot fully model the intrinsic semantic relations of instances.

To solve the above problems, in this letter, we propose an
effective and efficient deep hashing-based LDL method, dubbed
as Deep Discrete Hashing for LDL (DDH-LDL). Specifically,
our learning framework captures implicit data semantics via
multiple layers of nonlinear feature transformation. Simultane-
ously, we capture the intrinsic semantic relations of instances
with message aggregation on Graph Convolutional Network
(GCN) [14]–[17], as accurately modeling data semantic rela-
tions is important for similarity search accuracy and thus the
quality of prediction labels. Moreover, we elaborately design a
discrete optimization module [18] in our learning framework to
seamlessly preserve the extracted semantics into binary hash
codes by minimizing binary quantization errors. The overall
architecture of our model is demonstrated in Fig. 1. The main
contributions of this work are summarized as follows:
� Different from existing hashing-based LDL methods on

shallow models, we develop a deep hashing-based LDL
model, which deeply captures the implicit data semantics
and simultaneously models the semantic relations of in-
stances. To the best of our knowledge, there is still no
similar work.

� We propose a discrete optimization module in the deep
hashing framework for LDL, which effectively reduces the
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Fig. 1. The basic learning framework of the proposed method. The figure is
better viewed with pdf magnification.

quantization errors, improves the quality of hash codes, and
further improves the search performance and the accuracy
of predicted labels.

II RELATED WORK

1) Label Distribution Learning: LDL aims to learn label
distributions instead of discrete binary labels to describe the
instances. Improved Iterative Scaling-Learning from Label Dis-
tribution (IIS-LLD) [19] is the first method for LDL, which
learns label distributions by maximizing a likelihood of a max-
imum entropy model. Conditional Probability Neural Network
(CPNN) [19] exploits a three-layer neural network to learn the
label distributions. Label Distribution Support Vector Regressor
(LDSVR) [20] is proposed to fit a sigmoid function to each
module of the label distribution simultaneously by a multi-
output support vector machine. The concept of label distribution
learning is formally proposed in [6] and six LDL methods are
proposed in [6]. Particularly, Adaptation Algorithm of k-Nearest
Neighbor (AA-kNN) [6] first finds the k most similar samples
of the query sample in the training set on feature space, then
the mean of the label distributions of the k similar samples is
calculated as the label distribution of the query sample. AA-kNN
is performed without the training process and it improves the
learning scalability.

2) Hashing for Label Distribution Learning: Hashing [8]
aims to learn a set of hash functions to project instance features
into the Hamming space and measure the similarities of in-
stances through Hamming distance. For the detailed introduction
about hashing, please refer to the survey [8].

In order to accelerate the similarity search process of AA-
kNN mentioned above, hashing-based methods, including Bi-
nary Coding based Label Distribution Learning (BC-LDL) [12]
and Discrete Binary Coding based Label Distribution Learning
(DBC-LDL) [13] are proposed to first transform the original
features into the Hamming space, then the label distribution
of unknown instance is predicted according to top-k similar
instances in Hamming space. BC-LDL is the first method that
introduces hashing to LDL, which is supervised by a pair-wise
semantic matrix at the stage of hash code learning and adopts
a sequential learning strategy to learn the hash codes and func-
tions. Further, DBC-LDL learns hash codes and functions by
joint label and pair-wise semantic supervision, and adopts an
iterative strategy to optimize the objective model.

Different from the shallow methods BC-LDL and DBC-LDL,
in this letter, we propose a new deep hashing-based LDL method

to fully capture the implicit data semantics and simultaneously
model the semantic correlations of instances. To the best of our
knowledge, there is still no similar work.

III. THE PROPOSED METHOD

Let X ∈ Rn×d denote the dataset, where n represents the
number of instances and d is the feature dimension of each
instance. Let B ∈ {−1,+1}n×r denote the hash codes1, where
r is the hash code length. Let D = [d1;d2; . . .;dn] ∈ (0, 1)n×c

denote the labels, where c is the number of instance categories.
‖ · ‖F denotes Frobenius norm. sgn(·) means the sign function
which binarizes the input to −1 or 1.

1) Deep Hash Learning: In our method, the hash code learn-
ing network mainly contains three modules: Multi-Layer Per-
ception (MLP) [21] module, GCN module, and Fusion mod-
ule [22], [23]. For the MLP module, we evacuate the implicit
identity semantics of instances. The GCN module is designed
to capture the intrinsic relations between instances. Then we
design a Fusion module to fuse the embedded representations
from two modules into a unified one and support the subsequent
binary coding.

The structure of the MLP module is formulated as follows:

F
(l)
mlp = σmlp(F

(l−1)
mlp W

(l)
mlp + z(l)), s.t. l ≥ 1, (1)

where F
(l)
mlp denotes the output of l-th layer network, σmlp

denotes the activation function, Wmlp denotes the parameter

matrix, z denotes the bias term, and F
(0)
mlp is the input X .

In the GCN module, we calculate the Cosine similarity
of labels as the similarities between instances, that is, S =
Cos(D,D). To better adapt to the characteristics of LDL, we
only focus on the similar paired instances, and ignore the paired
instances with low similarity.

S̃ =

{
0, if Sij < β,

Sij , else
, (2)

where Sij represents the similarity between the i-th instance
and the j-th instance, β is a threshold parameter. The message
passing process of the GCN module is formulated as follows:

F (l)
gcn = σgcn(S̃F

(l−1)
gcn W (l)

gcn), s.t. l ≥ 1, (3)

the definitions of variables in (3) are similar to (1).
The process of our deep hash learning can be expressed as

follows:

Fmlp = MLP(X;Θmlp), F gcn = GCN(X, S̃;Θgcn),

F = Fusion(Fmlp,F gcn;Θfs),

H = HashLayer(F ;Θhl), (4)

where F denotes the fused features, H denotes the relaxed rep-
resentations of hash codes, Θmlp, Θgcn, Θfs, Θhl denote the
parameters of the MLP module, GCN module, Fusion module
and Hash Layer, respectively.

In addition, we design a similarity relation preserving loss
to preserve the similarities between the instances into the hash

1It can be transformed into binary codes by simple operation (sgn(B) +
1)/2
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codes. The hash code learning is performed by minimizing the
following loss:

Lcode = ‖ Cos(H,H)− S̃ ‖2F . (5)

We take MLP as the backbone of hash function to project
the original features into the relaxed binary representations.
The hash function can be expressed as Ĥ = MLPH(X;Θhf ),
where Θhf denotes the parameters of the hash function. To
make the hash function learning network fit the hash code
learning network, we minimize the differences between the
outputs, Ĥ,H , of these two networks. The loss function for
hash function learning is formulated as follows:

Lfunc = ‖ Ĥ −H ‖2F . (6)

Thus, the overall objective function for deep hash learning is
formulated as follows:

min
Θmlp,Θgcn,

Θfs,Θhl,Θhf

L = Lcode + Lfunc. (7)

We employ Adam optimizer [24] to optimize the hash code
and function learning network. In the test stage, the hash codes
can be obtained by binarizing ĤR: B = sgn(ĤR), where R
is a rotating matrix, we will introduce it in the next subsection.

2) Discrete Optimization Module: To reduce the binary
quantization loss, we design a discrete optimization module [25],
[26] to directly learn binary hash codes B. Firstly, we rotate H
to make it closer to the vertex of the hypercube without changing
the relative paired similarities of H . Secondly, we perform
the label embedding D as a supervised semantic-guided hash
code learning process via a linear mapping, and calculate the
optimal hash codes by iterative optimization until convergence.
We formulate this module as:

min
P ,R�R=I,

B∈{−1,1}n×r

‖ B −HR ‖2F + α‖ B −DP ‖2F , (8)

where R is the rotation matrix, and α is the balance parameter,
and P is a mapping matrix from label embedding to the hash
codes. In this letter, we propose an iterative optimization strategy
to solve this optimization problem.

Step P: By fixing R,B, update P . The formula of optimizing
P can be written as:

min
P

αtr(P�D�DP − 2B�DP ), (9)

where tr(·) denotes the trace operator. By calculating the
derivative of (9) w.r.t P and setting it to 0, we can obtain that
P = D−1B.

Step R: By fixing P , B, update R. We first compute the SVD
of the matrix B�H:

U ,Ω,V = svd(B�H), (10)

where U and V denote left and right singular matrix of B�H ,
respectively [27]. Then, we can obtain the solution of R as R =
V �U�.

Step B: By fixing P ,R, the formula for optimizing B can be
written as:

min
B∈{−1,1}n×r

−tr(B�(HR+ αDP )). (11)

TABLE I
STATISTICS OF THE EXPERIMENTAL DATASETS

Then, we can obtain that B = sgn(HR+ αDP ).
3) Label Distribution Generation: For a new query set, we

first obtain the query hash codes through hash functions. Then,
we retrieve the k most similar instances from the retrieval set in
the Hamming space for each instance in the query set. Finally,
for each instance in the query set, we take the average value of the
label distributions of thekmost similar instances as the predicted
label distribution. The calculation process of the predicted label
distribution is formulated as follows:

dq =
1

k

∑
di, i ∈ {1, 2, . . ., k}nearest. (12)

IV. EXPERIMENT

1) Datasets: We conduct our experiments on five widely
tested datasets: Movie [20], RAF-ML [28], fbp5500 [29], Flickr-
LDL [30], and SCUT-FBP [31]. For each dataset, we randomly
choose 90% of the instances as the training set, and set the
remaining instances as the query set. The basic statistics of these
datasets are summarized in Table I.

2) Compared Baselines: We compare the proposed method
with six state-of-the-art methods, including four traditional
LDL methods: Improved Iterative Scaling-Learning from Label
Distribution (IIS-LLD) [19], Conditional Probability Neural
Network (CPNN) [19], Label Distribution Support Vector Re-
gressor (LDSVR) [20] and Adaptation Algorithm of k-Nearest
Neighbor (AA-kNN) [6], and two shallow hashing-based LDL
methods: Binary Coding based Label Distribution Learning
(BC-LDL) [12] and Discrete Binary Coding based Label Distri-
bution Learning (DBC-LDL) [13]. In experiments, we directly
use the source codes of IIS-LLD, CPNN, LDSVR and AA-KNN
to perform experiments, and carefully reproduce the codes of
BC-LDL and DBC-LDL according to the original letters. The
parameters of all baselines are set to the values recommended
by the authors.

3) Evaluation Metrics: We adopt the same evaluation met-
rics with the previous works [12], [13] to evaluate the compared
baselines. Among them, Chebyshev distance (Cheb), Clark
distance (Clark), Canberra metric (Canber), Kullback-Leibler
divergence (K-L) are used to measure the distance between
two distributions. For these metrics, the smaller value indicates
better performance. Cosine coefficient (Cosine) and Intersec-
tion similarity (Intersec) measure the similarity between two
distributions. For these metrics, the larger value indicates better
performance. Furthermore, the ranks of six measure values
are also given in the parentheses right after the corresponding
measure values. Then we utilize three different rank metrics
to evaluate the performance of all methods in our experiments,
i.e., Accuracy Rank (Acc. Rank), Time Rank, and Average Rank
(Avg. Rank).
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TABLE II
EXPERIMENTAL RESULTS ON FIVE DATASETS, THE BEST RESULT IN EACH COLUMN IS MARKED WITH BOLD

4) Implementation Details: Our hash code learning network
includes an MLP module and a GCN module. The MLP module
consists of three fully connected layers and the GCN module
contains one graph convolutional layer. The fusion module
consists of two one-layer fully connected layer module, which
follows the GCN and MLP modules respectively, the outputs of
these two modules are added element-wise as the fused features.
The hash function network consists of three fully connected
layers. To learn more comprehensive information, we set the
batch size in the training process as the size of the training set.
Our method adopts the same configuration as BC-LDL [12] and
DBC-LDL [13]: set the length of hash codes to 128, k to 30 and
the training set as the retrieval set.

5) Experimental Results and Discussions: The comparison
results are shown in Table II. In this table, we can find that our
method achieves the best accuracy performance on five datasets.
That is mainly because our method can deeply capture implicit
data semantics, effectively model the semantic relations between
instances, and reduce binary quantization errors with discrete op-
timization. In addition to accuracy performance, our method also
achieves better performance on learning efficiency, especially on
larger datasets, such as Movie, RAF-ML, fbp5500, and Flickr-
LDL. This is because the network we adopted is lightweight
and less parameters are required to optimize. Besides, we use
a larger batch to train the network directly and further improve
the efficiency of our method. Hence, our proposed method can

converge rapidly and achieve high efficiency. On the whole, the
average ranking of our method is the best on five datasets.

Besides, we design two variants to evaluate the effects of
our designed deep architecture. DDH-LDL-I removes the GCN
module, which means that only the MLP module is used as the
backbone network of hash code learning. DDH-LDL-II removes
the discrete optimization module, which means that the output
Ĥ of the hash function is directly binarized without rotating. The
experimental results in Table II show that the performance of
these variants decreases when we remove GCN or discrete opti-
mization module. The results prove the effects of these modules.

V. CONCLUSION

In this letter, we propose a simple but effective Deep Discrete
Hashing for Label Distribution Learning (DDH-LDL) network,
which is the first deep hashing framework for label distribution
learning. The proposed model captures implicit data seman-
tics with deep networks and seamlessly embeds the extracted
semantics into binary hash codes, so that more accurate label
distribution can be predicted. Moreover, a discrete optimization
module is designed in the deep hashing framework to reduce the
binary quantization errors and further improve the performance.
Experiments validate the superiority of the proposed approach.
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