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Multi-modal Discrete Collaborative Filtering
for Efficient Cold-start Recommendation

Yang Xu, Lei Zhu, Zhiyong Cheng, Jingjing Li, Zheng Zhang, Huaxiang Zhang

Abstract—Hashing is an effective technique to improve the efficiency of large-scale recommender system by representing both users
and items into binary codes. However, existing hashing-based recommendation methods still suffer from two important problems: 1)
Cold-start. They employ the user-item interactions and single auxiliary information to learn the binary hash codes. But the full
interaction history is not always available and the single auxiliary information may be missing. 2) Efficient optimization. They learn the
hash codes with two-step relaxed optimization or one-step discrete hash optimization based on the discrete cyclic coordinate descent,
which results in significant quantization loss or still consumes considerable computation time. In this paper, we propose a Multi-modal
Discrete Collaborative Filtering (MDCF) for efficient cold-start recommendation. We map the multi-modal features of users and items to
a consensus Hamming space based on the matrix factorization framework. Specifically, a low-rank self-weighted multi-modal fusion
module is designed to adaptively fuse the multi-modal features into binary hash codes. Additionally, to support large-scale
recommendation, a fast discrete optimization method based on augmented Lagrangian multiplier is developed to directly compute the
binary hash codes with simple operations. Experiments show the superior performance of the proposed method over state-of-the-art
baselines.

Index Terms—Multi-modal fusion, Discrete collaborative filtering, Cold-start, Efficient recommendation
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1 INTRODUCTION

W ITH the development of E-commerce, recommender
systems have been widely adopted by many online

services for helping their customers find desirable products
to purchase. However, the ever-growing scales of products
and users render recommendation more challenging than
ever before [1]. For example, there are more than 0.82 billion
active Taobao1 users and over one billion products for sale
till now. Consequently, it is challenging to make immediate
response to match products for potential customers accu-
rately and efficiently, by analyzing large-scale yet sparse
user interaction history.

As a critical class of recommendation methods, Collabo-
rative Filtering (CF), as exemplified by Matrix Factorization
(MF) algorithms have demonstrated great success in both
academia and industry. MF factorizes an n × m user-item
rating matrix to project both users and items into a r-
dimensional latent feature space, where the user’s prefer-
ence scores for items are predicted by the inner product
between their latent features. However, the time complexity
for generating top-k items recommendation for all users
is O(nmr + nm log k) [2]. Therefore, MF-based methods
are often computationally expensive and inefficient when
handling the large-scale recommendation applications [3, 4].
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Hashing-based recommendation algorithms [5, 6] are
promising to tackle the efficiency challenge by mapping
both users and items into the same k-dimension binary
Hamming space. Each user and item are then represented by
k-bit binary codes. The Hamming similarity between them
can be computed very efficiently by Hamming distance (us-
ing an Exclusive-Or operation). However, learning binary
hash codes is generally NP-hard [7] due to the discrete
constraints. To tackle this problem, the researchers resort to
a two-step hash learning procedure [6, 8], where continuous
representations are first computed by the relaxed optimiza-
tion, and subsequently the hash codes are generated by
binary quantization. This learning strategy indeed simplifies
the optimization challenge. However, it inevitably suffers
from significant quantization loss [5, 9]. Hence, several
solutions are developed to directly optimizing the binary
hash codes with Discrete Cyclic Coordinate descent (DCC)
that one hash bit is optimized in each iteration step [10–12].

Despite much progress has been achieved, existing
hashing-based recommendation methods still suffer from
two important problems: 1) Cold-start. Most hashing-based
recommendation methods mainly rely on the user-item in-
teractions and single specific content feature. Multi-modal
features of users and items are not taken into account.
Under such circumstances, they cannot provide meaningful
recommendations for new users and items (e.g. for the
new items who have no interaction history with the users
or lack of the particular auxiliary feature), thus cold-start
problems cannot be well handled. 2) Efficient optimization.
Most the state-of-the-art hashing-based recommendation
methods learn the hash codes bit-by-bit with DCC. Thus,
learning all hashing bits requires lots of iterations. Although
DCC scales linearly with the size of data, a lot of additional
computation cost and information loss are generated in the
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optimization process.
To alleviate these problem, in this paper, we propose a

Multi-modal Discrete Collaborative Filtering (MDCF) method
for fast cold-start recommendation. We extract multi-modal
features from the cold-start objects, and simultaneously map
them into the compact binary hash codes by sufficiently ex-
ploiting their complementarity. More importantly, different
from existing cold-start recommendation solutions [13–16],
we propose a self-weighted multi-modal binary mapping
method to adaptively fuse the multi-modal features into
hash codes with automatically generated fusion weights. Be-
sides, in real-world large-scale recommender systems, data
sparsity is also a significant challenge. To solve this problem,
we additionally impose low-rank constraint on multi-modal
fusion module, which handles the extremely sparse user-
item interaction data and helps highlight the latent shared
features across different users and items. To support large-
scale recommender systems, we develop an efficient discrete
optimization approach based on augmented Lagrangian
multiplier to directly solve binary hash codes by simple
and efficient operations with alleviating the quantization
errors. Moreover, in the online recommendation stage, the
proposed method can efficiently fuse multi-modal features
by using dynamic modality weights and adaptively gener-
ate the hash codes for cold-start users and items.

Finally, we evaluate the proposed method on three
public datasets, and demonstrate its superior performance
over the state-of-the-art baselines. The proposed optimiza-
tion approach yields much lower time and space costs
and higher recommendation performance than DCC. Since
real-world recommender systems tend to use a two-stage
recommendation framework, consisting of an efficient item-
recalling stage and a highly accurate fine-ranking stage. To
better show the performance of the hash codes, we further
design a two-stage recommendation framework. The ex-
perimental results of two-stage recommendation framework
show that our proposed method can substantially improve
the performance of the recommender systems with a small
information loss. The main technique contributions of this
paper are summarized as follows:
• We propose a Multi-modal Discrete Collaborative

Filtering (MDCF) method for efficient cold-start rec-
ommendation. MDCF transforms multi-modal fea-
tures of users and items into binary hash codes by
sufficiently exploiting the complementarity. To the
best of our knowledge, there is still no similar work.

• We propose an efficient discrete optimization strat-
egy based on augmented Lagrangian multiplier to
directly learn the user and item hash codes with
simple efficient operations. This strategy avoids the
great storage cost of huge interaction matrix and
the performance penalty in existing discrete cyclic
coordinate descent based hash optimization process.

• Instead of adopting the fixed modality fusion
weights to generate hash codes, we propose a
modality-adaptive and self-weighted online hashing
module to generate hash codes of cold-start users
and items. Specifically, the online hashing module is
hyperparameter-free. It could avoid time-consuming
and inaccurate parameter adjustment in the online
recommendation process.

This paper is an extension of our preliminary paper [17].
In this paper, we further deliver the following contributions:

• Different from [17] that fuses multi-modal informa-
tion of users and only supports cold-start user rec-
ommendation, we reformulate the objective function
and transform multi-modal features of users and
items into binary hash codes separately. Our new
formulation enables MDCF to take full advantage of
multi-modal auxiliary information of both users and
items, and can be applied directly in both cold-start
user and cold-start item recommendation tasks.

• We develop an efficient discrete optimization strat-
egy of MDCF, and analyze its efficiency theoretically
and experimentally. Additionally, we propose an ini-
tialization module to further improve the learning
performance of MDCF. The evaluation results show
the advantage of initialization module on accelerat-
ing the model training and improving the recom-
mendation performance.

• We conduct more extensive experiments on larger
public datasets, report more performance metrics of
recommendation, and compare the proposed method
with more competing baselines. Additionally, we de-
sign a two-stage recommender system, consisting of
an efficient item-recalling stage and a highly accurate
fine-ranking stage, to evaluate the performance of
our proposed method in practice. The evaluation
results show the advantage of MDCF on accelerat-
ing the recommendation of practical recommender
systems with acceptable accuracy loss.

2 RELATED WORK

In this paper, we investigate the hashing-based collabora-
tive filtering at the presence of multi-modal features for
fast cold-start recommendation. Hence, in this section, we
mainly review the recommender systems with auxiliary
information and the recent advanced hashing-based recom-
mendation methods.

2.1 Recommendation with Auxiliary Information
Collaborative filtering is one of the most widely used tech-
niques in recommender systems. However, in the cold-start
scenario, since the collaborations between users or items
are not available, CF-based models become ineffective. To
alleviate the cold-start problem, one of the main strategies is
to use auxiliary information such as demographic data, trust
relations or user reviews beside the collaborative filtering
method [14, 18, 19]. In general, a large amount of descriptive
information about items and users is available in real-world
applications, such as visual descriptions and textual descrip-
tions of movie. Making full use of multi-modal auxiliary
information can improve our understanding of items and
users [20, 21]. Due to the success of hybrid methods which
incorporate the auxiliary information and the collaborative
filtering, most current multi-modal recommendation algo-
rithms are based on the hybrid models [22–25]. For in-
stance, [22] proposes a deep users’ multimodal preferences-
based recommendation method to capture the textual and
visual matching of users and items for recommendation.
[23] learns the modal-specific representations of users and
items by utilizing information interchange between users
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and items in multiple modalities for micro-video recommen-
dation. [25] adopts deep matrix factorization architecture
to learn the concept representation of multi-model data.
However, in the cold-start scenario, both interaction and
auxiliary information may be missing, which can lead to
a significant degradation of recommendation performance.
In addition, there are still few works that apply hashing
techniques to multi-modal cold-start recommender systems.

2.2 Hashing-based Recommendation

As discussed in Section 1, the two-step hashing-based rec-
ommendation framework consists of relaxed optimization
step and binary quantization step. The real-valued represen-
tations of users and items are first obtained by the relaxed
optimization, and hash codes of them are then generated
by the quantization. A pioneer work of this kind [26] is
proposed to exploit Locality-Sensitive Hashing (LSH) [27] to
generate hash codes for Google new readers based on their
item-sharing history similarity. Based on this, [28, 29] follow
the idea of Iterative Quantization [30] to generate binary
codes from real-valued user/item latent factors. To enhance
discriminative capability of hash codes, the decorrelated
constraint [8] is imposed on user/item real-valued latent
factors before quantization. However, due to the metric
loss of latent factors induced by quantization, the hash
codes only preserve the similarity between user and item,
rather than preference based on inner product. Therefore, [6]
propose to impose Constant Feature Norm (CFN) constraint
on real-valued latent factors of user and item, and then
quantize the metric values and similarity separately. [31]
proposes a collaborative hashing model and corresponding
distributed optimization method to learn user and item hash
codes. As indicated by [5], this two-step approach will lead
to significant quantization loss.

To alleviate quantization loss, direct binary code learning
by discrete optimization is proposed [32]. In the recommen-
dation area, Discrete Collaborative Filtering (DCF) [5] is the
first binarized collaborative filtering method, which directly
learns binary hash codes in matrix factorization with binary
constraint by DCC. On the basis of DCF, Discrete Deep
Learning (DDL) [13] applies Deep Belief Network (DBN)
to extract real-valued representation of items from auxiliary
information, and generates hash codes by combining the
DBN with DCF. Content-aware discrete matrix factorization
methods [14, 15] develop discrete optimization algorithms
to learn binary codes for users and items at the presence of
their respective auxiliary information. Discrete Factorization
Machines (DFM) [16] learns hash codes for any auxiliary fea-
ture and models the pair-wise interactions between feature
codes. Discrete trust-aware matrix factorization (DTMF) [33]
and discrete social recommendation (DSR) [34] learn binary
representation of users and items by reconstructing the rat-
ing and social relationship between users and items. The rec-
ommendation process of the above algorithms mainly relies
on the user-item interactions and single auxiliary feature.
When the part of interaction history is not available or the
single auxiliary feature is missing, their performance will be
seriously deteriorated. Besides, since the above approaches
solve the hash codes with bit-by-bit discrete optimization,
they still consume considerable computation time.

TABLE 1
Main notations used in this paper.

Notation Description
B binary hash code matrix of n users
D binary hash code matrix of m items
S the user-item rating matrix

X(k)/Y (k) feature matrix of the k-th modality data of users/items
φ(X(k))/φ(Y (k)) nonlinear transformed representation of X(k)/Y (k)

Hx/Hy multi-modal shared factor representation of users/items
W

(k)
x /W

(k)
y mapping matrix of the k-th modality data of users/items

Rx,Ry rotation matrix
ZRx ,ZRy auxiliary discrete variable
µ

(k)
x /µ

(k)
y weight of the k-th modality data of users/items

n the number of users
m the number of items
p the number of anchors
r hash code length

Different from existing hashing-based recommendation
algorithms, the proposed MDCF method has the following
advantages. First, the proposed multi-modal binary map-
ping strategy is low-rank, self-weighted, and efficient. It
can support cold-start recommendation well. Second, we
propose an efficient discrete optimization method to di-
rectly learn the binary hash codes, which has better hash
learning efficiency than the widely-used DCC-based dis-
crete hash optimization method. Third, the online cold-
start recommendation problem is based on efficient online
hashing, which can efficiently fuse multi-modal data of cold-
start users and items and adaptively generate hash codes
by using dynamic modality weights. Finally, we design a
two-stage recommender system based on MDCF to better
illustrate the advantages of the binary representation for the
practical recommender systems.

3 THE PROPOSED METHOD

3.1 Notations and Problem Formulation

Assume that there are n users and m items, and the user-
item rating matrix S is of size n×m, where each entry sij ∈
R indicates rating of a user i for an item j. Suppose that
Ox = oxi|ni=1 is the user training dataset, which contains
multi-modal auxiliary information of n users represented
with Mx different modality features (e.g. demographic
information, location and interaction preference extracted
from tags and reviews), and Oy = oyi|mi=1 is the item train-
ing dataset, which contains multi-modal auxiliary informa-
tion of m items represented with My different modality fea-
tures (e.g. audiovisual materials of items, descriptions, tags
and reviews). The k-th modality feature of users and items
are denoted as X(k) = [x

(k)
1 , x

(k)
2 , ..., x

(k)
n ] ∈ Rdk×n and

Y (k) = [y
(k)
1 , y

(k)
2 , ..., y

(k)
m ] ∈ Rdk×m respectively, where dk

is the feature dimension of the k-th modality. Our proposed
method aims at learning hash codes B ∈ {−1, 1}r×n for
users and D ∈ {−1, 1}r×m for items to represent their
latent factors in the offline training stage, where r is the
hash code length. The hash codes of the cold-start users
and items that have no collaborative information or few
collaborative information are obtained by efficient online
hashing, and recommendation results are quickly generated
by calculating the Hamming distance between hash codes
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Fig. 1. The basic framework of the proposed MDCF. The framework consists of two main parts: offline training and online recommendation. The
main task of the offline training stage is to learn hash functions and generate hash codes for users and items by fusing multi-modal auxiliary
information of them. In the online recommendation stage, when cold-start objects arrive, the binary hash codes can be quickly generated by the
proposed modality-adaptive hashing method with dynamic modality weights and the learned hash functions in the offline training stage.

in the online recommendation stage. The basic framework
of the proposed MDCF is illustrated in Figure 1.

Throughout this paper, we use bold lowercase letters to
represent vectors and bold uppercase letters to represent
matrices. All of the vectors in this paper denote column
vectors. Non-bold letters represent scalars. We denote tr(·)
as the trace of a matrix and ‖ · ‖F as the Frobenius norm
of a matrix. ∆m

def
= {x ∈ Rm|xi ≥ 0, 1>x = 1} is the

probabilistic simplex. sgn(·) : R → ±1 is the sign function
which returns −1 for x < 0 and 1 for x ≥ 0. Main notations
used in this paper are listed in Table 1.

3.2 Low-rank Self-weighted Multi-modal Fusion

Given a training dataset O = oi|li=1, which contains
l multi-modal auxiliary information represented with
M different modality features. The k-th modality
feature is X(k) = [x(k)1 , ..., x(k)l ] ∈ Rdk×l. We first obtain
the nonlinear transformed representation φ(x(k)i )

as [exp(
||x(k)

i −a(k)
1 ||

2
F

2σ2
k

), ..., exp(
||x(k)

i −a(k)
p ||

2
F

2σ2
k

)] where

{a(k)1 , ..., a(k)p } are p anchors that are randomly selected from
the training samples in them-th modality, σk is the Gaussian
kernel parameter. φ(X(k)) = [φ(x(k)1 ), ..., φ(x(k)l )] ∈ Rp×l
preserves the modality-specific sample correlations by
characterizing correlations between the sample and
certain anchors. Since the heterogeneous modality gap
and inter-modality redundancy in multi-modal data
are detrimental to hashing learning. In this paper, we
aim at adaptively mapping the nonlinear transformed
representation φ(X(k))|Mk=1 into a consensus shared multi-
modal representation H ∈ Rr×l (r is the hash code length)
in a shared homogeneous space. Specifically, considering
that the complementarity of multi-modal features and
the generalization ability of the fusion module are very

important, we formulate this part as:

min
µ(k),W(k),H

M∑
k=1

µ(k)||H −W (k)φ(X(k))||2F + ζ||µ||2F ,

s.t.µ = [µ(1), µ(2), ..., µ(M)]>, µ ∈ ∆M ,

(1)

where W (k) ∈ Rr×p, k = 1, ...,M is the mapping matrix
of the k-th modality feature, µ(k) is the weight of the k-
th modality and it measures the importance of modality
feature. By setting weights, the complementarity of multi-
modal features can be fully exploited. Similar to previous
multi-modal fusion method [11], we introduce the second
term in Eq.(1) to smooth the weight distribution. ζ is a
hyper-parameter used to balance the fusion weights of each
modality in the multi-modal fusion process. If there is no
ζ or if ζ tends to 0, the weight of the optimal modality
with the minimum reconstruction loss will be assigned to
1, while the weights of the other modalities will be assigned
to 0. On the other hand, If ζ approaches infinity, each
modality will be assigned an equal weight. Under such
circumstance, the fusion approach will not be able to exploit
the complementarity of multi-modal features. Therefore, it
is advisable to involve an additional parameter ζ in this
parameter-weighted hash learning, whose optimal value is
confirmed to be data related. In practice, introducing addi-
tional parameter means that more time will be consumed
on parameter adjustment in the offline training process, and
the parameter adjustment requirement is also contradictory
to the fact that we cannot manually assign an appropriate
parameter value for each cold-start user and item in the
online recommendation process.

To address this problem, in this paper, we introduce
a virtual weight and propose a self-weighted multi-modal
mapping approach which can achieve the same goal as
Eq.(1) without additional hyper-parameter. The formula is

min
W(k),H

M∑
k=1

||H −W (k)φ(X(k))||F , (2)
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where || · ||F is the Frobenius norm of the matrix. We can
derive the following theorem.
Theorem 1 Eq.(2) is equivalent to

min
µ∈∆M ,W(k),H

M∑
k=1

1

µ(k)
||H −W (k)φ(X(k))||2F . (3)

Proof Note that,
M∑
k=1

1

µ(k)
||H −W (k)φ(X(k))||2F

(a)
= (

M∑
k=1

1

µ(k)
||H −W (k)φ(X(k))||2F )(

M∑
k=1

µ(k))

(b)

≥ (

M∑
k=1

||H −W (k)φ(X(k))||F )2,

(4)

where (a) holds since
∑M
k=1 = µ(k) = 1 and (b) holds according

to the Cauchy-Schwarz inequality. This equation indicates

(

M∑
k=1

||H−W (k)φ(X(k))||F )2 = min
µ∈∆M

M∑
k=1

1

µ(k)
||H−W (k)φ(X(k))||2F ,

(5)
It is easy to derive

min
W(k),H

M∑
k=1

||H −W (k)φ(X(k))||F

⇔ min
W(k),H

(

M∑
k=1

||H −W (k)φ(X(k))||F )2

⇔ min
µ∈∆M ,W(k),H

M∑
k=1

1

µ(k)
||H −W (k)φ(X(k))||2F ,

(6)

which completes the proof.
As shown in Eq.(3), if the k-th modality feature is discrimi-
native, then the value of ||H −W (k)φ(X(k))||F should be
small and the corresponding 1

µ(k) should be large. Accord-
ingly, if the modality feature is indiscriminative, it should
have a small 1

µ(k) . Therefore, 1
µ(k) can be considered as a

virtual weight of the k-th modality feature, and it measures
the importance of this modality.

In this paper, we focus on enabling the recommenda-
tion task for cold-start users and items. Given the train-
ing nonlinear transformed representations φ(X(k))|Mx

k=1 and
φ(Y (k))|My

k=1. We aim at mapping them into corresponding
consensus shared multi-modal representations Hx and Hy

by the form of Eq.(2), respectively. We formulate this part as

min
ΘH

LH = min
ΘH

Mx∑
k=1

1

µ
(k)
x

||Hx −W (k)
x φ(X(k))||2F

+

My∑
k=1

1

µ
(k)
y

||Hy −W (k)
y φ(Y (k))||2F ,

(7)

where ΘH denotes the variables to be learned.
In practical recommender systems, such as Taobao2 and

Amazon3, there are a huge number of users and items,
which have rich and diverse auxiliary information. How-
ever, a specific user only has a small number of interactions
with limited items, and the auxiliary information is also
complex and varied. Consequently, we need to map large
mount of heterogeneous and high-dimensional sparse fea-
ture into a homogeneous shared space. To avoid spurious
correlations caused by the mapping matrix, we impose a

2. www.taobao.com
3. www.amazon.com

low-rank constraint on Wx and Wy :

min
ΘH

LH + γ(

Mx∑
k=1

rank(W (k)
x ) +

My∑
k=1

rank(W (k)
y )), (8)

where γ is a balance parameter and rank(·) is the rank
operator of a matrix. The low-rank constraint on mapping
matrix helps highlight the latent shared features across
different users or items and handles the extremely spare
observations. Meanwhile, the low-rank constraint makes
the optimization more difficult for the reason that low-
rank optimization is a well-known NP-hard problem. As
an alternative method, the nuclear norm is well-known to
be a convex surrogate to the matrix rank, and is widely
used to encourage low-rankness in previous work [35, 36].
However, the nuclear norm optimizes the singular values of
the matrix, but the changes of the singular values are not
always lead to a change of the rank. To tackle this problem,
we adopt an explicit form of low-rank constraint as follows:

min

M∑
k=1

rank(W (k))⇔ min

M∑
k=1

lk∑
i=d+1

(σi(W
(k)))2, (9)

where σi(W (k)) denotes the i-th singular value ofW (k). lk
is the total number of singular values of W (k). Note that

lk∑
i=d+1

(σi(W
(k)))2 = tr(V (k)>W (k)W (k)>V (k)), (10)

where V (k) consists of singular vectors which correspond to
the (lk − d)-smallest singular values of W (k)W (k)>. Based
on Eq.(9) and Eq.(10), we can rewrite the low-rank constraint
on Wx and Wy as follows:

min
V

(k)
x ,V

(k)
y

LR = min
V

(k)
x ,V

(k)
y

Mx∑
k=1

tr(V (k)
x

>
W (k)

x W (k)
x

>
V (k)
x )

+

My∑
k=1

tr(V (k)
y

>
W (k)

y W (k)
y

>
V (k)
y ).

(11)The multi-modal fusion module can be rewritten as:
min

ΘH ,V
(k)
x ,V

(k)
y

LH + γLR. (12)

3.3 Multi-modal Discrete Collaborative Filtering
To obtain feature representations applicable to efficient cold-
start recommendation task, in this paper, we propose to
preserve multi-modal shared factors into binary hash codes
with matrix factorization, which can support large-scale
collaborative filtering problems.

Given a rating matrix S of size n ×m, where n and m
are the number of users and items, respectively. Let bi ∈
{±1}r denote the binary hash codes for the i-th user, and
dj ∈ {±1}r denote the binary hash codes for the j-th item,
the rating of user i for item j is approximated by Hamming
similarity ( 1

2 + 1
2r b
>
i dj). Thus, our goal is to learn binary

hash code matrix B = [b1, ..., bn] ∈ {±1}r×n and D =
[d1, ..., dm] ∈ {±1}r×mfor users and items respectively,
where r � min(n,m) is the hash code length. Similar to
the problem of conventional collaborative filtering, the basic
discrete collaborative filtering can be formulated as:

min
B,D
||S −B>D||2F ,

s.t.B ∈ {±1}r×n,D ∈ {±1}r×m.
(13)

To address the sparse and cold-start problem, we in-
tegrate auxiliary information of users and items into the
above model, by substituting B and D with the rotated
multi-modal shared factors RxHx and RyHy respectively
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(Rx,Ry ∈ Rr×r are rotation matrices), and keeping their
consistency during the optimization process. The formula is
given as follows:

min
Rx,Ry,B,D

||S −H>x R>xRyHy||2F

+ α1||B −RxHx||2F + α2||D −RyHy||2F ,
s.t. B ∈ {±1}r×n,D ∈ {±1}r×m,R>xRx = R>y Ry = Ir. (14)

This formulation has two advantages: 1) All of the
decomposed variable are not directly subject to discrete
constraint. As shown in the optimization part, the hash
codes can be learned with a simple sgn(·) operation instead
of bit-by-bit discrete optimization. The second and third
terms can guarantee the acceptable information loss. 2) The
learned hash codes can reflect the multi-modal features of
users and items via Hx and Hy respectively, and involve
the latent interactive features in S simultaneously.
3.4 Overall Objective Formulation
By integrating the above two parts into a unified learning
framework, we derive the overall objective formulation of
Multi-modal Discrete Collaborative Filtering (MDCF) as:

min
Θ
||S −H>x R>xRyHy||2F + α1||B −RxHx||2F

+ α2||D −RyHy||2F + βLH + γLR,
s.t. B ∈ {±1}r×n,D ∈ {±1}r×m,R>xRx = R>y Ry = Ir, (15)

where α1, α2, β, γ are balance parameters. The first three
terms minimize the information loss during the process
of preserving multi-modal features and interaction features
into hash codes. LH projects multi-modal features of users
and items into corresponding homogeneous shared space,
respectively. LR is a low-rank constraint for mapping ma-
trix, which can highlight the latent shared features across
different users or items.
3.5 Fast Discrete Optimization
Solving hash codes in Eq.(15) is essentially an NP-hard prob-
lem due to the discrete constraint. Existing hashing-based
recommendation methods always learn the hash codes bit-
by-bit with DCC [5]. Although this strategy alleviates the
quantization loss problem caused by conventional relaxing-
rounding optimization strategy, it is still time-consuming.

In this paper, with the favorable support of objective
formulation, we propose to directly learn the discrete hash
codes with fast optimization. Specifically, different from
existing hashing-based recommendation methods [5, 13, 14,
16], we avoid explicitly computing the rating matrix S,
and achieve linear computation and storage efficiency. We
propose an effective optimization algorithm based on aug-
mented Lagrangian multiplier (ALM) [37, 38]. In particular,
we introduce two auxiliary variables, ZRx and ZRy , to
separate the constraint on Rx and Ry respectively, and
transform the objective function Eq.(15) to an equivalent one
that can be tackled more easily. Let

LZ = ||Rx −ZRx +
GRx

λ
||2F + ||Ry −ZRy +

GRy

λ
||2F , (16)

where Z>Rx
ZRx = Z>Ry

ZRy = Ir . GRx ,GRy ∈ Rr×r
measure the difference between the targets and auxiliary
variables. Then the Eq.(15) is transformed as:

min
Θ
||S −H>x R>xRyHy||2F + α1||B −RxHx||2F

+ α2||D −RyHy||2F + βLH + γLR +
λ

2
LZ ,

s.t. B ∈ {±1}r×n,D ∈ {±1}r×m,R>xRx = R>y Ry = Ir, (17)

where Θ denotes the variables that need to be solved in
the objective function, λ > 0 is a balance parameter. With
this transformation, we follow the alternative optimization
process by updating each of variables, given the others
fixed.

Step 1: learning µ
(k)
x and µ

(k)
y . For convenience, we

denote ||Hx −W (k)
x φ(X(k))||F as h(k)x . By fixing the other

variables, we ignore the term that is irrelevant to µ(k)
x . The

original problem can be rewritten as:

min
µ
(k)
x ≥0,1>µx=1

Mx∑
k=1

h
(k)
x

2

µ
(k)
x

. (18)

With Cauchy-Schwarz inequality, we derive that
Mx∑
k=1

h
(k)
x

2

µ
(k)
x

(a)
= (

Mx∑
k=1

h
(k)
x

2

µ
(k)
x

)(
Mx∑
k=1

µ(k)
x )

(b)

≥ (
Mx∑
k=1

h(k)x )2,

where (a) holds since 1>µx = 1 and the equality in (b)

holds when
√
µ
(k)
x ∝ h(k)

x√
µ
(k)
x

. Since (
Mx∑
k=1

h
(k)
x )2 = const, we

can obtain the optimal µ(k)
x in Eq.(18) by

µ(k)
x =

h
(k)
x∑Mx

k=1 h
(k)
x

. (19)

Similar to µ(k)
x , the optimal µ(k)

y can be obtained by

µ(k)
y =

h
(k)
y∑My

k=1 h
(k)
y

. (20)

Step 2: learning W k
x and W k

y . Since W k
x and W k

y are
learned in a similar way, for convenience, we first introduce
the learning method of mapping matrix W k

x . Removing
the terms that are irrelevant to the W k

x , the optimization
formula is rewritten as

min
W

(k)
x

Mx∑
k=1

β

µ
(k)
x

||Hx −W (k)
x φ(X(k))||2F

+ γ

Mx∑
k=1

tr(V (k)
x

>
W (k)

x W (k)
x

>
V (k)
x ).

(21)

We calculate the derivative of Eq.(21) with respect to Wx

and set it to zero,
Mx∑
k=1

β

µ
(k)
x

||Hx −W (k)
x φ(X(k))||2F

+ γ

Mx∑
k=1

tr(V (k)
x

>
W (k)

x W (k)
x

>
V (k)
x ) = 0

⇒ γV (k)
x V (k)

x

>
W (k)

x +
β

µ
(k)
x

W (k)
x φ(X(k))φ(X(k))

>

=
β

µ
(k)
x

Hxφ(X(k))
>
.

(22)

By using the following substitutions,
Ax = γV

(k)
x V

(k)
x

>

Bx = β

µ
(k)
x

φ(X(k))φ(X(k))
>

Cx = β

µ
(k)
x

Hxφ(X(k))
>

, (23)

Eq.(22) can be rewritten as AxWx + WxBx = Cx, which
can be efficiently solved by Sylvester operation in Matlab.
Similar toW (k)

x , the Sylvester equation with respect toW (k)
y

is AyWy +WyBy = Cy , where
Ay = γV

(k)
y V

(k)
y

>

By = β

µ
(k)
y

φ(Y (k))φ(Y (k))>

Cy = β

µ
(k)
y

Hyφ(Y (k))
>

. (24)
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Step 3: learning Rx and Ry . The optimization formula
for updating Rx can be represented as

min
R>

x Rx=Ir

tr(R>xRyHyH
>
y R>y RxHxH

>
x − 2α1R

>
xBH>x

− 2R>xRyHyS
>H>x − λR>x (ZRx −

GRx

λ
)).

(25)
It is challenging to solve Rx directly due to the

orthogonal constraint. In this paper, for the term of
R>xRyHyH

>
y R

>
y RxHxH

>
x in Eq.(25), we use an auxiliary

variable ZRx
∈ Rr×r to substitute the second Rx, and

simultaneously keep the equivalence of them during the
optimization. With the constraint R>xRx = Ir , the above
equation can be transformed as:

max
R>

x Rx=Ir

tr(R>xCx) ,

Cx =−RyHyH
>
y R>y ZRxHxH

>
x + 2α1BH>x

+ 2RyHyS
>H>x + λZRx −GRx .

(26)

With transformation, the optimal Rx is defined as Rx =
PxQ

>
x , where Px andQx are comprised of left-singular and

right-singular vectors of Cx, respectively [39]. The objective
function with respect to Ry can be represented as

min
R>

y Ry=Ir

tr(R>y RxHxH
>
x R>xRyHyH

>
y − 2α2R

>
y DH>y

− 2R>y RxHxS
>H>y − λR>y (ZRy −

GRy

λ
)).

(27)
We introduce an auxiliary variable ZRy

and
substitute R>y RxHxH

>
x R

>
xRyHyH

>
y with

R>y RxHxH
>
x R

>
xZRy

HyH
>
y . Thus, the Eq.(27) can

be transformed into the following form
max

R>
y Ry=Ir

tr(R>y Cy) ,

Cy =−RxHxH
>
x R>xZRyHyH

>
y + 2α2DH>y

+ 2RxHxS
>H>y + λZRy −GRy .

(28)

The optimal Ry is defined as Ry = PyQ
>
y , where Py and

Qy are comprised of left-singular and right-singular vectors
of Cy , respectively.

Note that, the user-item rating matrix S ∈ Rn×m is
included in the terms 2RyHyS

>H>x and 2RxHxS
>H>y

when updatingRx andRy , respectively. In real-world retail
giants, such as Taobao and Amazon, there are hundreds of
millions of users and even more items. In consequence, the
user-item rating matrix S would be pretty enormous and
sparse. If we use S directly, the computational complexity
will be O(mnr) and it is extremely expensive to calculate
and store S. In this paper, we apply the singular value
decomposition to obtain the left singular and right singular
vectors as well as the corresponding singular values of
S. We utilize a diagonal matrix ΣS to store the o-largest
(o � min{m,n}) singular values, and employ an n × o
matrix PS , an o ×m matrix QS to store the corresponding
left singular and right singular vectors respectively. We sub-
stitute S with PSΣSQS and the computational complexity
can be reduced to O(max{mor, nor})(r, o � min{m,n}).
With transformation, both the computation and storage cost
can be decreased with the guarantee of accuracy.

Step 4: learningHx andHy . We calculate the derivative
of objective function with respect to Hx and Hy and set

them to zero, then we get

Hx =(

Mx∑
k=1

β

µ
(k)
x

Ir + α1Ir + R>xRyHyH
>
y R>y Rx)−1

(

Mx∑
k=1

β

µ
(k)
x

W (k)
x φ(X(k)) + α1R

>
xB + R>xRyHyS

>),

(29)

Hy =(

My∑
k=1

β

µ
(k)
y

Ir + α2Ir + R>y RxHxH
>
x R>xRy)−1

(

My∑
k=1

β

µ
(k)
y

W (k)
y φ(Y (k)) + α2R

>
y D + R>y RxHxS),

(30)

where S is substituted with PSΣSQS , and the time com-
plexity of computing R>xRyHyS

> and R>y RxHxS are
reduced to O(max{mor, nor}).

Step 5: learning B and D. We can obtain the closed
solutions of B,D as

B = sgn(RxHx), D = sgn(RyHy). (31)

Step 6: learning V (k)
x and V (k)

y . As described in section
3.2, V (k)

x and V
(k)
y are stacked by the singular vectors

which correspond to the (lk − d)-smallest singular values

of W (k)
x W

(k)
x

>
and W (k)

y W
(k)
y

>
, respectively. Thus we can

solve the eigen-decomposition problem to get V (k)
x ,V

(k)
y :

V (k)
x ← svd(W (k)

x W (k)
x

>
),V (k)

y ← svd(W (k)
y W (k)

y

>
). (32)

Step 7: learning ZRx
and ZRy

. The objective function with
respect to ZRx

and ZRy
can be transformed as

max
Z>

Rx
ZRx=Ir

tr(Z>Rx
Czrx),

Czrx = λRx −RyHyH
>
y R>y RxHxH

>
x , (33)

max
Z>

Ry
ZRy =Ir

tr(Z>Ry
Czry),

Czry = λRy −RxHxH
>
x R>xRyHyH

>
y , (34)

where the optimal ZRx
and ZRy

can be solved with theo-
rem 2.

Step 8: learning GRx
and GRy

. By fixing other vari-
ables, the update rules of GRx

and GRy
are

GRx = GRx + λ(Rx −ZRx), (35)

GRy = GRy + λ(Ry −ZRy ). (36)

3.6 Modality-adaptive Online Hashing for Cold-start
Recommendation

In the online recommendation stage, we aim to map multi-
modal features of the target users and items into binary hash
codes with the learned hash projection matrix {W (k)

x }Mx

k=1

and {W (k)
y }My

k=1, respectively. When cold-start users and
items have no rating history in the training set and are only
associated with auxiliary information of certain modality,
the fixed modality weights obtained from offline hash learn-
ing cannot address the modality-missing problem, and may
fail to effectively capture the variations of cold-start objects.

In this paper, with the support of online hash learning,
we propose to generate hash codes for cold-start objects
with a self-weighting scheme. The objective functions for
cold-start users and items are formulated as

min
B̂,µ

x′∈∆Mx

Mx∑
k=1

1

µ
(k)

x′

||B̂ −W (k)
x φ(X̂(k))||2F , (37)
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min
D̂,µ

y′∈∆My

My∑
k=1

1

µ
(k)

y′

||D̂ −W (k)
y φ(Ŷ (k))||2F , (38)

where W (k)
x and W

(k)
y are the mapping matrixes from

Eq.(15). X̂(k) and Ŷ (k) are k-th modality features of target
users and items, respectively. B̂ and D̂ are binary feature
matrices of target users and items, respectively. µ(k)

x′ and
µ
(k)
y′ are the dynamic modality weights to be learned.

We employ alternating optimization to update B̂, D̂,
µ
(k)
x′ and µ(k)

y′ . The update rules are

µ
(k)

x′ =
h

(k)

x′∑Mx
k=1 h

(k)

x′

, h
(k)

x′ = ||B̂ −W (k)
x φ(X̂(k))||F ,

µ
(k)

y′ =
h

(k)

y′∑My

k=1 h
(k)

y′

, h
(k)

y′ = ||D̂ −W (k)
y φ(Ŷ (k))||F ,

B̂ = sgn(

Mx∑
k=1

1

µ
(k)

x′

W (k)
x φ(X̂(k))),

D̂ = sgn(

My∑
k=1

1

µ
(k)

y′

W (k)
y φ(Ŷ (k))).

(39)

3.7 Initialization

Since MDCF deals with the discrete matrix factorization
problem, initialization is important for fast convergence. In
this paper, we propose an effective initialization strategy,
which first solves relaxed problem of Eq.(15), and then
quantizes the real-valued representation to obtain the initial
hash code for users and items. We also use alternate op-
timization to optimize the relaxed problem of Eq.(15). The
objective function for optimization is the same as Eq.(17)
except the binary constraints and the updating rules are the
same except B and D because the binary constraints are
removed. With the favorable support of Eq.(15), we can ob-
tain real-valued feature matrices of users and items,B∗ and
D∗, by removing the sign function in Eq.(31), respectively.
Then, the optimization can be done alternatively. B and D
are initialized to feasible solutions sgn(B∗) and sgn(D∗)
respectively, and the other variables are initialized as solu-
tions of the relaxed problem of Eq.(15). The effectiveness of
the proposed initialization is described in subsection 4.4.2.

3.8 Complexity Analysis

This section provides space and time complexity analysis of
MDCF. Directly adopting the n × m rating matrix S will
bring the space complexity O(nm), which is unacceptable
in large-scale recommender systems. In our method, we
substitute S with PSΣSQS where ΣS is a diagonal matrix
consist of the o-largest singular values, PS and QS are
the corresponding left singular and right singular vectors
respectively. Assuming that Mx = My = M . Since the
space complexity of storing PS and QS is O(o(m + n))
and that of storing modality features of users and items is
O(Mp(m + n)), the space complexity of offline hash code
learning stage can be reduced to O((o+Mp)(m+ n)).

The overall time cost of constructing φ(X) and φ(Y )
is O(Mp(m + n)). The time cost total O(Mpr(m + n)) for
updating µx and µy . The overall time cost of computing
Wx and Wy is O(2Mr2(d − lk) + Mp(p + r)(m + n)).
The overall time cost of updating Rx and Ry is O((7r2 +

2ro)(m + n) + 6r3 + 2ro2). Updating Hx and Hy re-
quire O((5r2 + 2ro + Mpr)(m + n) + 2ro2 + 8r3) in total.
Updating B and D require O(r2(m + n)) in total. The
time cost total O(4r2(m + n) + 4r3) for updating ZRx

and ZRy
. The overall time cost of updating Vx and Vy is

O(2r2(r + p)). Updating GRx and GRy only require O(2r)
in total. Suppose the entire algorithm requires iter iterations
for convergence, the overall time complexity of optimization
process is O(iter ×Mpr(m+ n)), where r is the hash code
length and the convergence experiment results in Fig. 6(a)
indicate that iter is usually 5 ∼ 10. In summary, training
MDCF is efficient since it scales linearly with m + n. In the
online stage, it takesO(Mprn̂) to generate binary hash code
for n̂ cold-start users/items.

Based on the above analysis, both space and time com-
plexity of MDCF is linear with the size of the dataset (m+n),
which is scalable for large-scale recommender systems.

3.9 Convergence Analysis

The objective function Eq.(17) is convex to one variable by
fixing the others. Thus, optimizing one variable in each step
will cause the value of the objective function to decrease or
equal. Our iterative update rule will monotonically reduce
the objective function value. After several iterations, the
optimization process will eventually reach a local minimum.
In addition, we will empirically verify the convergence of
the proposed MDCF on three datasets in experiments.

4 EXPERIMENTS

4.1 Evaluation Datasets

We evaluate the proposed method on three widely used
public datasets: MovieLens-1M4, MovieLens-10M4 and
BookCrossing5. In these three datasets, each user has only
one rating for an item.
• MovieLens-1M: This dataset is collected from the

MovieLens website by GroupLens Research. It orig-
inally includes 1,000,000 ratings from 6,040 users for
3,952 movies. The rating score is from 1 to 5 with 1
granularity. The users in this dataset are associated
with demographic information, and the movies are
related to 3-5 genre labels.

• MovieLens-10M: This dataset contains 10,000,054
ratings and 95580 tags applied to 10,681 movies by
71,567 users of the MovieLens. Unlike MovieLens-
1M dataset, demographic information is not included
in this dataset and ratings are made on a 5-star scale,
with half-star increments.

• BookCrossing: This dataset is collected by Cai-
Nicolas Ziegler from the Book-Crossing community.
It contains 278,858 users providing 1,149,780 ratings
about 271,379 books. The rating score is from 1 to
10 with 1 interval. Most users in this dataset are
associated with demographic information.

Considering the extreme sparsity of the original BookCross-
ing dataset, we remove the users with less than 20 rat-
ings and the items rated by less than 20 users. After the
filtering, there are 2,151 users, 6,830 items, and 180,595

4. https://grouplens.org/datasets/movielens/
5. https://grouplens.org/datasets/book-crossing/
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TABLE 2
Statistics of experimental datasets.

Dataset #User #Item #Rating Sparsity
BookCrossing 2,151 6,830 180,595 98.77%

MovieLens-1M 6,040 3,952 1,000,209 95.81%
MovieLens-10M 71,567 10,681 10,000,054 98.69%

ratings left in the BookCrossing dataset. For the MovieLens-
1M and MovieLens-10M datasets, we keep all users and
items without any filtering. The statistics of the datasets are
summarized in Table 2. To obtain multi-modal information
about items, we crawl the item-related information from the
web to extend the original datasets. For the BookCrossing
dataset, we crawl descriptions and reviews on Amazon.com
based on the book IDs provided in the dataset. For the
MovieLens-1M and MovieLens-10M datasets, we crawl di-
rectors, writers, cast, storyline, plot keywords, genres and
reviews on IMDB.com based on the movie links provided
in the datasets. Since some of the users lack multi-modal
auxiliary information, we use the user-item interaction data
and auxiliary information of users to generate the user’s
multi-modal preference features, which reflect the user’s
preference for different modality features of items, and
apply them as the user’s multi-modal features for model
learning.

We refer to all reviews written by a user as user docu-
ment. Also, an item document can be formed by merging
all reviews written for the item. Then, LDA is used to
extract the auxiliary features from descriptions, storylines
and reviews. The one-hot encoding approach is adopted to
generate feature representation for directors, writers, cast,
plot keywords, and genres.

In our experiments, we randomly select 20% users as
cold-start users, while 20% items as cold-start items, and
randomly keep their θ ratings and other ratings are removed
from the training set and transferred to the testing set. We
repeat the experiments with 5 random splits and report the
average values as the experimental results.
4.2 Evaluation Baselines and Evaluation Metrics
In this paper, we compare our approach with three con-
tinuous value based recommendation methods and three
hashing-based recommendation methods.
• Zero-shot recommendation (ZSR) [40] considers

cold-start recommendation problem as a zero-shot
learning problem [41]. It extracts real-valued rep-
resentation of user preference for each item from
user attribute. The parameters λ and β for the
relax and low-rank constraints are tuned within
{10−5, 10−3, 10−2, 10−1, 1, 5, 10, 100}.

• Collaborative topic regression (CTR) [18] is a hy-
brid recommendation algorithm that combines topic
model, collaborative filtering and probabilistic ma-
trix factorization (PMF) [42]. CTR generates real-
valued latent representations of users and items by
exploiting user’s collection data and content data
of items. The coefficient for the balanced regulariza-
tion λu, λv and topic parameter β are tuned within
{10, 100, 1000, 10000}.

• Collaborative deep learning (CDL) [19] is a proba-
bilistic model that learns a probabilistic SDAE [43]
and CF jointly. CDL leverages an effective deep
learning framework to learn real-valued latent rep-
resentation from interaction data and content data.

The parameter λu, λv , λn and λw are tuned within
{10−4, 10−2, 1, 102, 104}, and the layer structure of
SDAE is set as [8000, 200, 50] according to the results
of their experiments.

• Discrete Collaborative Filtering (DCF) [5] is the first
binarized CF method that can directly optimize the
binary codes for users and items.

• Discrete content-aware matrix factorization
(DCMF) [14] is the state-of-the-art binarized
method for CF with auxiliary information. It is the
extension of DMF based on the regression-based
modeling. The parameters λ1 and λ2 for modeling
user and item auxiliary features are tuned within
{1, 10, 50, 100, 500, 1000}.

• Discrete factorization machines (DFM) [16] is
the first binarized factorization machines method
that learns the hash codes for any auxiliary fea-
ture and models the pair-wise interaction between
feature codes. In DFM, the parameter β for the
softened de-correlation constraint is tuned within
{10−4, 10−3, 10−2, 10−1, 1, 10, 100} according to the
results of their sensitive analysis.

• Discrete deep learning (DDL) [13] is a binary deep
recommendation approach. It adopts Deep Belief
Network to extract item representation from item
auxiliary information, and combines the DBN with
DCF to solve the cold-start recommendation prob-
lem. The parameters α, β and λ are tuned within
{10−4, 10−3, 10−2, 10−1, 1, 10, 100}. The layer struc-
ture of DBN is set as [8000,800,30].

• Multi-feature discrete collaborative filtering
(MFDCF) [17] is the method we proposed earlier.

In the experiments, we adopt 5-fold cross validation method
on random split of training data to tune the optimal hyper-
parameters of all compared approaches. All the best hyper-
parameters are found by grid search.

The goal of our proposed method is to find out the top-k
items that the cold-start user may be interested in, or top-k
users who are most likely to interact with the cold-start item.
In our experiments, we adopt two common ranking eval-
uation methods: Accuracy@k and Normalized Discounted
Cumulative Gain (NDCG), to evaluate the quality of the
recommendation list. NDCG is a widely used measure for
evaluating recommendation algorithms [44, 45], owing to
its comprehensive consideration of both ranking precisions
and the position of ratings. Accuracy@k is widely used as
a metric for previous ranking based recommender systems
[13, 46] to test whether the target user’s favorite items that
appears in the top-k recommendation list.
4.3 Results and Analysis
4.3.1 Comparison with the State-of-the-art
In this subsection, we evaluate the recommendation per-
formance of MDCF and the baselines in cold-start recom-
mendation scenario when the cold-start threshold θ is set
as 1. Fig. 2 demonstrates the recommendation performance,
including Accuracy@k and NDCG@k of MDCF and com-
peting baselines on three real-world datasets for the both
cold-start item (Fig. 2(a)) and cold-start user (Fig. 2(b))
recommendation tasks when the hash code length r is set
as 8.
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Fig. 2. Comparison of MDCF with baseline algorithms on the BookCrossing, MovieLens-1M and MovieLens-10M datasets in both cold-start item
recommendation (a) and cold-start user recommendation scenarios (b).
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Fig. 3. Effects of our proposed multi-modal self-weight learning strategy in both cold-start item recommendation (a-b) and cold-start user
recommendation scenarios (c-d).
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Fig. 4. Accuracy@20 and NDCG@20 using MDCF with/without initializations on three datasets (r = 8) in both cold-start item (a-b) and cold-start
user (c-d) recommendation scenarios. We can see that the proposed initialization strategy helps to achieve higher performance.

Compared with existing hashing-based recommendation
methods, the proposed MDCF algorithm consistently and
significantly outperforms the state-of-the-arts with respect
to Accuracy@k and NDCG@k in the both cold-start rec-
ommendation scenarios. Since DCF does not make use
of content information, it does not support cold-start rec-
ommendation sufficiently. DFM exploits the factorization
machine to model the potential relevance between user
characteristics and item features. However, it ignores the
collaborative interaction. DDL is based on the discrete col-
laborative filtering. It adopts DBN to generate item feature
representation from their auxiliary information. Neverthe-
less, the structure of DBN is independent with the overall
optimization process, which limits the learning capability of
DDL. DCMF integrates auxiliary information about users
and items on the basis of matrix factorization. However,
it does not take into account the weight of multi-modal
auxiliary information and the online learning of cold-start

objects, which reduce the cold-start recommendation per-
formance. Moreover, these experimental results show that
the proposed MDCF outperforms the compared continuous
value based hybrid recommendation methods under the
same cold-start settings. The better performance of MDCF
than ZSR, CTR and CDL validates the effectiveness of the
proposed multi-modal fusion strategy, and demonstrates
that the hash codes with discriminative feature represen-
tation capability can be learned by our proposed online
multi-modal hashing method. Additionally, it can be easily
observed that the proposed MDCF consistently outperforms
MFDCF on three datasets, showing the effectiveness of the
initialization module and MDCF for modeling auxiliary
information of users and items.
4.3.2 Run Time Comparison
In these experiments, we compare the computation ef-
ficiency of our proposed MDCF with three state-of-the-
art hashing-based recommendation methods DMF, DCMF
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Fig. 5. Sensitive analysis of the MDCF on the three datasets in both cold-start item recommendation (a-d) and cold-start user recommendation
scenarios (e-h), where Normalized Accuracy@20 is obtained from dividing each Accuracy@20 by the maximum with respect to the parameter.

TABLE 3
Efficiency comparison between MDCF and the other hashing-based recommendation methods where the code length ranges from 8 to 256 on the

BookCrossing dataset.

Methods Initialization time/iteration (s) Training time/iteration (s)
8 bits 16 bits 32 bits 64 bits 128 bits 256 bits 8 bits 16 bits 32 bits 64 bits 128 bits 256 bits

DDL 2.3398 3.0564 3.4605 3.6305 3.9811 7.7034 56.0339 80.8218 131.7272 349.6231 889.4721 6675.9737
DFM 2.4203 2.9404 4.0259 8.0024 23.0475 102.7623 2.0538 2.3503 2.7921 4.0821 9.1515 26.8376

DCMF 0.1876 0.2234 0.3486 0.8306 2.6959 6.6021 0.1734 0.1957 0.2338 0.4333 0.7743 3.1239
MDCF 0.0256 0.0332 0.0512 0.0995 0.2011 0.6981 0.0261 0.0331 0.0504 0.1038 0.2361 0.7436
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Fig. 6. Variations of objective function value with the number of iterations
on BookCrossing dataset (a), Normalized NDCG@20 of MDCF in both
cold-start user (b) and cold-start item (c) recommendation scenarios
given different cold-start threshold θ.

and DDL on BookCrossing dataset. Similar results can be
found on other datasets. The algorithms are implemented
via MATLAB. Table 3 demonstrates the efficiency of these
methods in both initialization stage and training stage on
BookCrossing dataset using a 2.0GHz Intelr Core(TM) i7-
4750HQ CPU.

From the Table 3, we can see that MDCF achieves
significant speedups. Compared with DFM, our proposed
MDCF is about 73 to 139 times faster than DFM in the
initialization stage and about 34 to 77 times faster in the
training stage. DDL needs to pre-train the DBN once during
the initialization stage, and updates the DBN in each round
of iteration during the training stage, which slows down the
model training considerably. Compared with DDL, MDCF
is about 10 to 88 times faster than DDL in the initialization
stage and thousands of times faster in the training stage.
Specifically, DCMF has a faster training speed compared to
other baselines, because it is a recommendation framework
based on the matrix factorization, just like our proposed
MDCF. However, from the Table 3, we can see that our
proposed MDCF is about 6 to 12 times faster than DCMF
in the initialization stage and about 3 to 7 times faster in
the training stage. This is because DCMF is also based on
the DCC optimization strategy, similar to DDL and DFM.
Since DCC optimizes hash codes by the bit-wise learning,
the update rule is applied among bits iteratively until

convergence. Denoting the number of the bit-wise iteration
as Tb and the number of entire algorithm iteration as T .
The overall time complexity for DCC-based algorithms is
O(Tr2(Tb|V|+m+n))[5] where V is observed rating set. As
discussed in section 3.8, the overall time complexity of train-
ing MDCF is O(TMpr(m+n)). Since M,p, r � min(m,n)
in practice, the time complexity of DCC-based algorithms
is O(TTbr

2|V|) more than that of MDCF. It is shown that
our proposed fast optimization strategy is more efficient
than discrete cyclic coordinate descent theoretically and
experimentally.
4.3.3 Ablation Analysis
In this paper, we propose a self-weighted multi-modal
fusion strategy to preserve the multi-modal auxiliary in-
formation into hash codes while exploring their comple-
mentarity, and the hash codes of cold-start objects are
adaptively learned in an online mode. The self-weighted
scheme addresses the modality-missing problem for cold-
start objects and learns adaptive modality weights to dy-
namically fuse the multi-modal features of cold-start objects.
The effectiveness of low-rank constraint is detailed in the
subsection 4.3.4. Thus, in this subsection, we design five
variants of our method to evaluate the effectiveness of the
proposed self-weighted scheme: 1) MDCF-fixed: It adopts
fixed modality fusion weights obtained from the offline
learning to generate the hash codes of cold-start objects.
2) MDCF-equal: It fixes the weight of each modality to 1
at both the offline learning and online hashing phases. 3)
MDCF-1 and MDCF-2: They extract content features from
only the first and the second modality of auxiliary informa-
tion, respectively. 4) MDCF-miss: It randomly removes 50%
auxiliary information of users and items in the test set, then
tests the performance of MDCF in the modality-missing
case. Fig. 3 shows the comparison of the cold-start recom-
mendation performance. From the figures, we can observe
that the performance of our method is obviously higher
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Fig. 7. Results of evaluating the two-stage model on the three datasets (a-c) and speedup ratio with respect to hash code length (d).

than that of the variants in both cold-start recommendation
scenarios. In addition, the use of more auxiliary information
can be helpful on improving recommendation performance,
and the performance of MDCF is minimally affected by
the modality-missing problem. These results validate that
the proposed self-weighted strategy can indeed explore the
complementarity and consistency of multi-modal auxiliary
information, adaptively fuse multiple modalities and im-
prove the recommendation accuracy.

Additionally, we design experiments to test the perfor-
mance of the proposed initialization module. In the sec-
tion 4.3.2, we discussed the efficiency of the initialization
module. Here, we focus on evaluating its effectiveness. The
results are shown in Fig. 4. It is easily observed that the
MDCF with initialization consistently outperforms MDCF
without initialization on the three datasets in both cold-
start recommendation scenarios, showing the effectiveness
of initialization module in MDCF.
4.3.4 Parameter Sensitivity Analysis and Convergency
We conduct experiments to observe the performance vari-
ations with the involved parameters α1, α2, β and γ. We
fix the hash code length as 8 bits and report results on
three datasets in both cold-start recommendation scenar-
ios. Since α1, α2, β, and γ are equipped in the same ob-
jective function, we change their values from the range
of {10−6, 10−3, 10−1, 100, 101, 103, 106} while fixing other
parameters. Detailed experimental results are presented in
Fig. 5. α1 is the balance parameter used to control the multi-
modal fusion of the user’s auxiliary information. From the
Fig. 5, we can observe that, in the cold-start item recom-
mendation scenario, α1 ∈ [10−6, 10−3] can lead to better
recommendation performance on both MovieLens datasets
and α1 should be set to a larger value on BookCrossing
dataset. Specifically, a similar pattern is also found in the
cold-start user recommendation scenario for α2, which is the
balance parameter used to control the multi-modal fusion
of items. This figure also shows that the performance is
relatively better when β is in the range of [10−3, 100] for
the cold-start item recommendation, while in the range
of [10−1, 100] for the cold-start user recommendation. In
addition, MDCF obtains better performance when the value
of γ is from 10−1 to 101 in both cold-start scenarios. The
performance variations with γ shows that the low-rank
constraint can take effect on preserving more discriminative
binary codes.

MDCF is suitable for the cold-start recommendation
where we want to compute predictions for users or items
that have no collaborative information (θ = 0) or few
collaborative information. The results of cold-start threshold
analysis are shown in Fig. 6(b-c). With the increase of cold-

start threshold θ from 0 (no collaborative information) to
20, the recommendation performance gradually improves
in all of the three datasets and more rapidly in the sparser
datasets, indicating MDCF can work well in different cold-
start scenarios.

To evaluate the convergency of the proposed method,
we further perform experimental analysis on three datasets
with the hash code length fixed as 8 bits. The convergence
curves recording the variations of objective function with
the number of iterations are shown on the BookCrossing
dataset in Fig. 6(a). As shown in the figure, the updating
of variables monotonically decreases the objective function
value at each iteration. When the number of iterations is less
than 5, the objective function value drops sharply. Specifi-
cally, when the initialization stage is over and entering the
training stage, the binarization ofB andDmatrices leads to
a negligible rise in the objective function value, after which
it will rapidly converge. From the Fig. 6(a), we can observe
that MDCF achieves a stable minimum within 10 iterations
on BookCrossing dataset. Similar convergence results were
found on the MovieLens-1M and MovieLens-10M datasets.
These results indicate that our proposed method can con-
verge effectively.
4.3.5 Evaluating the Two-Stage Recommender Systems
Similar to [15], we design a two-stage recommender system,
consisting of a hashing-based recalling stage and a fine-
ranking stage, to help us better understand how MDCF can
accelerate practical recommender systems. It is easy to note
that our proposed MDCF can be changed to a continuous
value based recommendation algorithm with the design
idea of initialization module. Thus, in this evaluation, the
first stage is to exploit MDCF for recalling the top-K po-
tentially candidates, and the second stage is to use real-
valued variant of MDCF for fine-ranking. Moreover, we use
the real-valued variant of MDCF as a baseline to evaluate
the performance of the proposed two-stage recommender
system.

The evaluation results on the three datasets in the cold-
start user recommendation scenario are shown in Fig. 7. We
can see that when the number of recalled items is small,
the two-stage recommender system will have a large per-
formance loss, but the recommendation can be accelerated
by more than 20 times, and even up to around 38 in the
MovieLens-10M dataset with the largest number of items.
Specifically, when the number of recalled items increases,
the performance loss will decrease rapidly, but the speedup
ratio is also decreasing. Similar results can be found in the
cold-start item recommendation scenario. Therefore, in a
practical recommender system, we usually need to find a
balance between efficiency and effectiveness. Additionally,
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from Fig. 7(a-c), we observe that the speedup ratio is usually
larger in the datasets with more items, because the recom-
mendation method based on continuous values takes more
time to retrieve large item sets, and the efficiency advantage
of hash codes will be more obvious. From the description
of Section 3.5, we know that the hash code length is an
important factor that influences the efficiency of MDCF.
Therefore, we conduct experiments to observe the efficiency
variations with respect to the hash code length for the two-
stage recommender system on three datasets in cold-start
user recommendation scenario. The evaluation results are
shown in Fig. 7(d). We can easily observe that as the length
of the hash code increases, the speedup ratio gets larger and
larger. This is because increasing the length of the continu-
ous value features makes the similarity computation time-
consuming, while the efficiency of calculating Hamming
distance is less affected by the hash code length.
5 CONCLUSION

In this paper, we propose a multi-modal discrete collabo-
rative filtering method that projects multi-modal auxiliary
information of users and items into the binary hash codes to
support efficient cold-start recommendation. The proposed
method can handle the data sparsity problem with low-
rank constraint, enhance the discriminative capability of
hash codes with self-weighted multi-modal binary fusing,
generate hash codes for the cold-start objects online by
modality-adaptive hashing, and achieve computation and
storage efficient with discrete binary optimization. The eval-
uation on three real-words datasets show that the proposed
method outperforms the state-of-the-art significantly. More-
over, MDCF is used as the first stage of the two-stage
recommender system for recalling the top-K potentially
candidates, and demonstrate its advantages for finding a
balance between efficiency and effectiveness of practical
recommender systems. Moreover, benefiting from the pro-
posed directly discrete optimization method, the efficiency
of MDCF is substantially improved compared to the base-
line methods.
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