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Explainable Discrete Collaborative Filtering
Lei Zhu, Yang Xu, Jingjing Li, Weili Guan, Zhiyong Cheng

Abstract—Using hashing to learn the binary codes of users and items significantly improves the efficiency and reduces the space
consumption of the recommender system. However, existing hashing-based recommender systems remain black boxes without any
explainable outputs that illustrate why the system recommends the items. In this paper, we present a new end-to-end discrete
recommendation framework based on the multi-task learning to simultaneously perform explainable and efficient recommendation.
Toward this goal, an Explainable Discrete Collaborative Filtering (EDCF) method is proposed to preserve the user-item interaction
features and semantic text features into binary hash codes by adaptively exploiting the correlations between the preference prediction
task and the explanation generation task. At the online recommendation stage, EDCF makes efficient top-K recommendation by
calculating the Hamming distances between the feature hash codes, and simultaneously generates natural language explanations for
recommendation results through the explanation generation module. To obtain the hash codes directly from the end-to-end neural
network, we introduce an attentive TextCNN and an Adaptive Tanh layer in the preference prediction task. For explanation generation,
Long Short-Term Memory is employed to generate the explanations for recommendation results from the binary hash codes of user
and item. Experiments demonstrate the superiority of the proposed method.

Index Terms—Discrete collaborative filtering, Efficient recommendation, Explainable recommendation
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1 INTRODUCTION

IN the past few decades, with the rapid development of
internet applications and the explosive growth of Internet

contents, more and more users have been adopted recom-
mender systems as the main entrance to obtain Internet
information. For example, most users are used to browsing
”hot and vital” or ”recommended for you” topics to quickly
get the news, short videos, social information, and shop-
ping products they are interested in. However, it is more
challenging than ever before to provide recommendations
immediately with a dramatically growing number of users
and items for the recommender systems.

Hashing is an effective technique to address this chal-
lenge due to its desirable advantages in terms of similarity
computation and storage efficiency. It has been success-
fully applied in various research fields, such as computer
vision [1, 2], information retrieval [3–7], and data mining
[8, 9]. In recent years, researchers have paid more atten-
tion to applying hashing technology to the recommender
systems, and we refer to such methods as hashing-based
recommendations [10–13]. The core idea of hashing-based
recommendation is converting the original features of users
and items into low-dimensional binary hash codes, where
the Hamming similarities between users and items can be
computed very efficiently using an Exclusive-Or operation
to provide efficient top-K recommendation.

As a critical class of hashing-based recommendation
method, Discrete Collaborative Filtering (DCF) [14], as
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exemplified by Discrete Matrix Factorization (DMF) [10]
is receiving increasing attention from both academia and
industry. Given an n × m user-item rating matrix, DMF
projects both users and items into an r-dimensional Ham-
ming space, where each user and item are represented by
r-bit binary hash codes. With the transformation, users’
preference scores for items are predicted by the Hamming
similarities between their hash codes. Compared with real-
valued feature representations, binary hash codes can be
tens of times faster on similarity computation [15], which
applies to large-scale recommender systems. Inspired by
the success of DCF, many hashing-based recommendation
methods have been proposed. Representative works in-
clude Discrete Personalized Ranking (DPR) [16], Discrete
Deep Learning (DDL) [17], Discrete Factorization Machines
(DFM) [11], and Discrete Content-aware Matrix Factoriza-
tion (DCMF) [18], etc.

Although existing hashing-based recommendation
methods have shown promising performance in terms of
recommendation accuracy and efficiency, they still suffer
from an important limitation in practical applications.
That is, existing hashing-based recommendation methods
are still black boxes and cannot provide users with
reasonable explanations for the recommendation results.
Many studies have shown that providing explainability for
recommendation results not only allows system designers
to understand the working state of the system, but also
effectively improves users’ trust in the recommender
systems and helps them make fast and accurate decisions
[19, 20]. In addition, a growing number of countries are
enacting laws and regulations1 that explicitly require
recommender systems to be sufficiently explainable.

The mainstream e-commerce and crowd-sourced review

1. https://bit.ly/38GOqqr
https://bit.ly/378XO64
https://bit.ly/3KLyCAp
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websites, such as Taobao2 and Dianping3, allow users to rate
and comment on the purchased products or services. The
textual reviews usually contain rich information about prod-
uct features and user preferences. Existing content-aware
hashing-based recommendation methods [10, 11, 17, 18]
tend to exploit reviews to enhance the prediction accuracy,
while ignoring to effectively use semantic information in the
reviews to generate explanations for the recommendation
results. In this paper, we aim at developing an efficient
recommendation model that can preserve the semantic in-
formation in the reviews into hash codes for effective and
efficient top-K recommendation, and more importantly, it
can simultaneously generate natural language explanations
for the top-K recommendation results by using the hash
codes as input.

Motivated by the above analyses, an Explainable Dis-
crete Collaborative Filtering (EDCF) method is proposed in
this paper, which designs a multi-task learning framework
to fully exploit the correlations between the preference pre-
diction task and the explanation generation task, so that the
two tasks reinforce each other in the learning process and
achieve a more effective learning objective than any single
task.

For the explanation generation task, generating natural
language explanations only based on the hash codes of user
and item is a difficult challenge. To address this challenge,
in this paper, we employ Long Short-Term Memory (LSTM)
[21] to translate the binary hash codes into sentences that
can express the interests and feelings of users. Specifically,
we design an end-to-end deep neural network for prefer-
ence prediction and simultaneously utilize a TextCNN to
extract sentiment features from user reviews. Moreover, we
introduce a review-level attention mechanism to model the
contributions of each review, as well as the usefulness to
the users and items. Specifically, to achieve end-to-end bina-
rization, a multiplayer perceptron network and an Adaptive
Tanh (ATanh) layer are integrated to project the semantic
features and user-item interaction to a joint low-dimensional
Hamming space. Thus, all the neural parameters in both
deep learning tasks as well as the hash codes for users and
items are learned by a multi-task learning approach in an
end-to-end training paradigm.

Remarkably, the performance of a multi-task learning
system is strongly dependent on the weights between each
task, and manually adjusting these weights is a difficult and
expensive process [22]. In this paper, we consider the homo-
morphic uncertainty of each task to weigh the loss functions
of the two tasks and design a principled loss function, which
can automatically learn the relative weights from the data
and has the robustness to the weight initialization. To the
best of our knowledge, EDCF is the first hashing-based
recommendation method that simultaneously considers the
semantic features of hash codes for improving the prediction
accuracy and generating natural language explanations for
the recommendation results. The main contributions of this
paper are summarized as follows:
• We propose an Explainable Discrete Collaborative

Filtering (EDCF) method for the explainable efficient

2. https://www.taobao.com/
3. https://www.dianping.com/

recommendation. EDCF can generate hash codes for
users and items to enable efficient top-K recommen-
dation, while using hash codes only as the input to
generate natural language explanations for recom-
mendation results. To the best of our knowledge,
there is still no similar work.

• We propose a multi-task learning framework based
end-to-end neural network architecture, which ex-
ploits the TextCNN and the attention mechanism
to extract the semantic features from the textual re-
views, and generates the hash codes of the users and
items by fully exploiting the correlations between
preference prediction task and explanation genera-
tion task.

• Instead of adopting the fixed task weights to train the
neural network, we design a principled loss function
to automatically adjust the task weights according
to the difficulty of each task and the model state.
The evaluation on experimental datasets shows that
this strategy allows EDCF to prioritize learning eas-
ier task and gradually tackle the difficult task at a
subsequent stage by adaptively adjusting the task
weights.

• We conduct extensive experiments on four public
datasets, and employ various widely tested evalu-
ation metrics to measure the performance of prefer-
ence prediction and explanation generation of EDCF.
The evaluation results show the advantage of EDCF
on improving recommendation accuracy and gener-
ating explanations compared with the baseline meth-
ods. We also verify and analyze the effectiveness of
each module in EDCF experimentally.

2 RELATED WORK
In this paper, we aim at generating natural language expla-
nations for the recommendation results while achieving an
efficient recommendation. Hence, in this section, we mainly
review the recent advanced hashing-based recommendation
methods and the explainable recommender systems based
on natural language generation technology. For more details
of hashing and explainable recommendation, please refer to
[23] and [24], respectively.

2.1 Hashing-based Recommendation
Early studies of hashing-based recommendation frame-
works focus on learning hash codes by employing a two-
step optimization strategy, which consists of a relaxed op-
timization step and a binary quantization step. Under this
strategy, the real-valued representations of users and items
are first learned by the relaxed optimization, and then
converted to binary codes by the quantization. A pioneering
work in this research area is [25], which employs Locality-
Sensitive Hashing (LSH) [26] and Jaccard measure method
to learn binary codes for efficiently searching Google News.
Based on this, Karatzoglou [27] generates binary codes from
real-valued representations of users and items by employ-
ing random projections. [28] follows the idea of Iterative
Quantization (ITQ) [29], which is widely used in the field of
hashing-based image retrieval, to rotate and binarize real-
valued latent representations of users and items. To improve
recommendation performance, the decorrelated constraint
[30] and constant feature norm constraint [31] are imposed
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on real-valued latent factors of users and items before quan-
tization. These two-step optimization strategies can learn
binary hash codes for users and items. But they can easily
bring significant quantization errors [14].

To alleviate quantization loss, Discrete Collaborative Fil-
tering (DCF) [14] employs the Discrete Coordinate Descent
(DCD) [32] for the first time to learn the hash codes of
users and items directly, rather than through the two-step
optimization strategy. DCF adds balanced and decorrelated
constraints to matrix factorization formulation and learns
hash codes using only rating information. Inspired by DCF,
Discrete Content-aware Matrix Factorization (DCMF) [18]
is the first hashing-based recommendation method that
considers side information to improve recommendation per-
formance and support cold-start recommendation scenarios.
DCMF learns the hash codes directly by DCD method. The
content features in the side information are obtained by
optimizing a multi-objective loss function and are preserved
in the hash codes. This strategy allows DCMF to learn the
hash codes of users or items in a cold-start setting. Similar to
DCMF, Discrete Deep Learning (DDL) [17] extracts content
features of items from side information by employing Deep
Belief Network (DBN) [33], and generates hash codes by
solving a relaxed optimization problem with an alternat-
ing optimization strategy. Discrete Factorization Machines
(DFM) [11] applies the factorization machines model to
exploit the pair-wise correlations between content features
and generate hash codes. Discrete Trust-aware Matrix Fac-
torization (DTMF) [34] and Discrete Social Recommendation
(DSR) [35] learn hash codes by reconstructing the rating and
social relationship.

Recently, deep learning techniques demonstrate promis-
ing performance in hashing-based recommendation tasks
[12, 13, 36]. For instance, DGCN-BinCF [12] utilizes Graph
Convolutional Network (GCN) [37] to model high-order
features of users and items, and distills the ranking in-
formation derived from GCN into binarized collaborative
filtering to generate hash codes. Due to the success of
Generative Adversarial Networks (GAN) [38], [13] applies
GAN to the hashing-based recommendation task, and pro-
poses an Adversarial Binary Collaborative Filtering frame-
work (ABinCF), which is optimized by approximating sign
function and Bernoulli distribution. [36] investigates the
problem of unsupervised deep hashing with graph neural
network for recommendation, and proposes a framework
called HashGNN, which simultaneously learns deep hash
functions and graph representations in an end-to-end man-
ner. These methods based on deep learning and hashing
technique can obtain more discriminative hash codes, but
they mainly rely on the user-item interactions, without con-
sidering the rich content features of users and items. In ad-
dition, existing hashing-based recommendation algorithms
are still black boxes, and they cannot generate explanations
for the recommendation results.

2.2 Generation-based Explainable Recommendation
Generation-based explainable recommendation methods
not only provide users with recommendation results, but
also generate sentence explanations to clarify why such
items are recommended. Based on natural language gener-
ation models, the recommender systems can automatically

TABLE 1
Main notations used in this paper.

Notation Description
Cu the user u’s review document
Wij the explanation of recommending item vj to user ui
R the user-item rating matrix
P the interaction feature matrix of users
Q the interaction feature matrix of items
Ŝu the learned review feature of user u
B the binary hash code matrix of n users
D the binary hash code matrix of m items
V the vocabulary of words in the reviews and explanations
n the number of users
m the number of items
α the learnable scaling parameter in ATanh layer

ϕ1, ϕ2 the uncertainty in the two tasks

generate explanation sentences for the recommendation re-
sults. For example, [39] proposes a method for automatically
generating natural language explanations based on LSTM.
The model uses user ratings as auxiliary information to train
the explanation generation module, so that the model can
generate reviews with the corresponding sentiment based
on the expected ratings. Inspired by how people explain
word-of-mouth recommendations, [40] proposes a method
to combine crowdsourcing and computation to generate
personalized natural language explanations. The authors ex-
tract the topical aspects based on an unsupervised learning
approach, and then generate natural language explanations
for the topical aspects.
3 THE PROPOSED METHOD
3.1 Overview
Due to the success of multi-task learning technique in
academia and industry, it is widely applied to generation-
based explainable recommendation tasks. [41] proposes
a Hierarchical Sequence-to-Sequence (HSS) model based
on multi-task learning for personalized recommendation
and natural language explanation generation, which adopts
an auto-denoising mechanism that selects sentences con-
taining item features for model training. [42] proposes a
deep framework named NRT based on multi-task learn-
ing which can simultaneously predict ratings and leverage
gated recurrent neural networks to generate abstractive
tips for the recommendation results. [43] proposes a multi-
task recommendation model, which integrates a sequence-
to-sequence learning model with matrix factorization and
jointly performs rating prediction and recommendation ex-
planation. [44] proposes an encoder-selector-decoder archi-
tecture for explainable recommendation inspired by hu-
man’s information-processing model in cognitive psychol-
ogy. The authors exploit the correlations between the rec-
ommendation task and the explanation task through co-
attentive multi-task learning. These approaches utilize a
multi-task learning strategy to generate natural language
explanations of the recommendation results while predict-
ing the ratings. However, in the large-scale recommendation
scenario, these approaches still consume considerable com-
putation time to generate top-K recommendations from the
enormous number of candidate items.

Different from existing explainable recommendation al-
gorithms, the proposed EDCF method has the following
advantages. First, EDCF can generate binary representations
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Fig. 1. The basic learning framework of the proposed EDCF.

of users and items to support efficient top-K recommen-
dation, while translating the hash codes into personalized
natural language explanations. Second, EDCF utilizes at-
tentive TextCNN and ATanh layer to achieve end-to-end
binary optimization for multiple tasks. Finally, EDCF can
automatically adjust the multi-task weights during model
training according to the task difficulty and model state.

The goal of our model is to learn the hash codes of
users and items, as well as to train an explanation gener-
ation module that can translate the hash codes into nat-
ural language explanation. To this end, we introduce an
Explainable Discrete Collaborative Filtering (EDCF) model
for efficient explainable recommendation. The architecture
of the proposed model is shown in Fig.1. The model is
based on a multi-task learning strategy and contains two
major components: neural discrete collaborative filtering on
the left and natural language explanation generation on the
right, which correspond to preference prediction task and
explanation generation task respectively.

For neural discrete collaborative filtering, the input con-
sists of the user set U , the item set V , the ratings and the
reviews. Each user is represented as its ID u ∈ U and
each item is denoted as the item ID v ∈ V . Ratings are
normalized through dividing by their maximum value. The
reviews posted by the user u are represented as a document
Cu = (C1

u,C
2
u, ...,C

md
u ), where md denotes the maximum

number of reviews. If the number of reviews posted by the
user is larger thanmd, a random selection strategy is applied
to form Cu. Each review Ci

u is denoted by a set of words
in the review. Similarly, document Cv = (C1

v ,C
2
v , ...,C

md
v )

denotes the set of reviews received by the item v.

Given user u’s review document Cu, the user attentive
TextCNN module embeds the words, reviews and user
ID, and generates review feature representation of user u.
In addition, we obtain user u’s interaction features from
the rating matrix using the Singular Value Decomposition
(SVD) method. And then, a Multi-Layer Perceptron (MLP) is
employed to project the concatenation of interaction features
and review features of user u to a real-valued representation
via several layers of non-linear transformations. Specifically,

we adopt an ATanh layer to transform the user’s real-
valued representation into a binary hash code. The same
process is applied for item modeling network with similar
layers. Then, we utilize Hamming similarity for preference
prediction. The Hamming similarity between user ui and
item vj is calculated as:

Hsim(ui, vj) =
1

2
+

1

2r
bTi dj , (1)

where r is the hash code length, bi ∈ {−1, 1}r×1 and
dj ∈ {−1, 1}r×1 are the hash codes of user ui and item vj ,
respectively. For natural language explanation generation, a
sequence decoding model based on LSTM is proposed to
translate the hash codes of ui and vj into a sequence of
words Wij = (w1, w2, ..., wme

), which illustrates why user
ui likes or dislikes item vj . wk denotes the k-th word in
the explanation, and me represents the maximum number
of words in the generated natural language explanation.
Moreover, Hsim(ui, vj) is used as a part of the input for the
decoding model to control the sentiment of the generated
explanations. At the online recommendation stage, there is a
significant efficiency difference between the neural network
computing and the hash code matching. To address this
issue, we first obtain the top-K recommendation results from
the massive candidate items by matching the hash codes
of the target user and candidate items rapidly, and then
the hash codes of the target user and top-K items are fed
into the explanation generation network to generate natural
language explanation for the recommendation results. All
the neural parameters and the hash codes of users and items
are learnt by a multi-task learning approach. The model can
be trained efficiently by an end-to-end learning paradigm
using back-propagation algorithms.

Throughout this paper, we use bold lowercase letters to
represent vectors and bold uppercase letters to represent
matrices. All of the vectors in this paper denote column
vectors. Non-bold letters represent scalars. Main notations
used in this paper are listed in Table 1.
3.2 Neural Discrete Collaborative Filtering
As shown in Fig.1, the neural discrete collaborative filter-
ing component consists of two parallel neural networks:
user modeling network and item modeling network. In
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the following, we focus on illustrating the process for user
modeling network in detail. The same process is applicable
to item modeling network with similar layers.

At the first stage of user modeling network, given a
user review document Cu, an attentive TextCNN network
is applied to process Cu. Fig.2 gives the architecture of the
attentive TextCNN. In the first layer, a word embedding
function is used to map each word in the user review doc-
ument Cu to a d-dimensional word embedding vector, and
then the given Cu is transformed to a fixed-size embedding
tensor Vu ∈ Rmd×mw×d, where mw denotes the maximum
number of words in each review (padded with zero in Cu

when the review length is less than mw). Following the
embedding layer is the convolution layer, where Nf filters
wi ∈ Rh×d, i ∈ {1, 2, ..., Nf} with a window of h words
are applied to extract features by convolution operations
on the word vectors. Let V k

u denote the embedding matrix
corresponding to the k-th review of the user u. Then, the
features generated by the i-th filter wi can be expressed as:

zik
u = f(wi ⊗ V k

u + µi), (2)

where µi is a bias term, f(·) denotes a non-linear activation
function such as ReLU [45], and ⊗ represents the convo-
lution operation. Then, we apply a max-pooling operation
[46] over the features ziku and take the maximum value
ẑiku = max{ziku } as the extracted feature of the k-th review
corresponding to the filter wi. The idea of max-pooling is
to capture the most important feature-one with the highest
value. We concatenate the features extracted by these Nf

filters, denoted as

sku = [ ˆz1ku , ˆz2ku , ...,
ˆ

z
Nfk
u ]T . (3)

In addition, the proposed model employs Ng sets of
filters with different window sizes to extract multiple re-
view features. The representation of the k-th review of the
given user is the concatenation of multiple review features
obtained by Ng sets of filters with varying window sizes,
denoted by:

Sk
u = [sk,1u ; sk,2u ; ...; s

k,Ng
u ]. (4)

The final output of the convolutional layer is

Su = [S1
u,S

2
u, ...,S

md
u ]. (5)

Existing works tend to improve the model performance
by exploiting latent features in the user’s textual reviews
[42, 47]. However, in practice, not all reviews are of high
quality and have high availability. Currently, most studies
do not consider the difference in the contribution of each
review to user and item modeling, which is not robust in
real life as each review has a different ability to represent

user interests and item features. To address this issue, we
introduce an attention mechanism in our model, which can
help to learn the weight of each review in user and item
modeling.

We employ a two-layer network to compute attention
score aku. The input to the attention layer in the user mod-
eling network contains two components: a feature matrix
composed of md review features of the given user and
embedding representations of the item IDs cku. Intuitively,
the ID embedding is added to identify the items that are
not distinctive and have low reference value. For the item
modeling network, user ID embedding is applied to the net-
work to identify users who frequently post spam reviews.
We formulate this part as

âku = W T
h f(WsS

k
u +Wuc

k
u + µ1) + µ2. (6)

where Wh ∈ Rh, Ws ∈ Rh×(Nf×Ng), Wu ∈ RId×h,
µ1 ∈ Rh, µ2 ∈ R1 are model parameters, Id is the dimension
of ID embedding, h represents the hidden layer size of the
attention network. The final attention score of the reviews
can be obtained by using the softmax function to normalize
the above scores, which can be interpreted as the contribu-
tion of the i-th review to model the preference of user u:

aku =
exp(âku)∑md
k=1 exp(â

k
u)
. (7)

After that, the review feature of user u can be repre-
sented as a weighted concatenation as follows:

Ŝu = [a1uS
1
u; a2uS

2
u; ...; amd

u Smd
u ]. (8)

Specifically, we consider both user review features and
interaction features in the model. Given a rating matrix R
of size n × m, where n and m are the numbers of users
and items, respectively. The user interaction features are
obtained by SVD method:

R = PQT , (9)
where the eigenvalue matrix is left blended into the feature
vectors, P ∈ Rn×l denotes the interaction feature matrix of
users, where the i-th row pi is the interaction feature of the
user ui, Q ∈ Rm×l represents the interaction feature matrix
of items, where the j-th row qj denotes the interaction
feature of the item vj , l denotes the interaction feature
length.

At the offline stage, we learn and store the hash codes
of users and items. At the online recommendation stage,
we make efficient top-K recommendations by matching the
hash codes quickly. To this end, instead of using a neural
latent factor model to predict ratings as in [48], we employ
a multi-layer perceptron network to map the user’s interac-
tion feature and review feature into a shared latent space to
obtain a real-valued representation of the user:
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p1i = [pi; Ŝui
],

p2i = W T
2 p

1
i + b2,

......

pLi = W T
L p

(L−1)
i + bL. (10)

In this paper, we aim to generate the binary represen-
tations B,D ∈ {−1,+1} for the users and items, respec-
tively. Since binary constraints are difficult to optimize in
networks, we employ an Adaptive Tanh (ATanh) layer in
our model, which is formulated as:

f(x) = tanh(αx), α > 0, (11)
where x is the activation of previous layers, α is a learnable
scaling parameter. In practice, the learned α should be
large enough to make the activations of ATanh fall into
the binary value {−1,+1}. Since the ATanh is differentiable
everywhere, it can be jointly trained with other layers via
back-propagation, and directly generate the binary codes4.

Then, the preference of user ui for item vj can be evalu-
ated by Eq.(1). The loss function of the preference prediction
module can be formulated as:

LPP =
∑

(ui,vj)∈Y +∪Y −

(
rij

max(R)
logHsim(ui, vj)

+ (1− rij
max(R)

) log(1−Hsim(ui, vj))),

(12)

where rij indicates the rating of user ui for item vj , Y +

denotes the observed interactions, Y − means the set of
negative samples, which are randomly selected from the
user-item pairs without observations in a certain proportion,
Y +∪Y − means all training interactions, max(R) represents
the max score in all ratings, e.g., 5 in a 5-star rating system.

3.3 Natural Language Explanation Generation
At the online recommendation stage, the input is only the
target user ID, and the binary hash code of the target user
can be obtained from matrix B. Then the top-K recommen-
dation is fast generated by computing the Hamming dis-
tance between hash codes of the target user and the candi-
date items. In this paper, we aim to generate corresponding
explanations while making top-K recommendations. Since
the input does not contain any textual information, it is a
challenging task to generate natural language explanations
only based on the hash codes of the target user and the item.

Based on the above issues and considering the out-
standing performance of Long Short-Term Memory (LSTM)
model in text generation-related tasks, we adopt LSTM as
the basic model for the explanation generation module.
The right part of Fig.1 shows our explanation generation
module, whose main idea is expressed as follows:

p(wt
ij |w1

ij , w
2
ij , ..., w

t−1
ij ,Cij) = fh(ht), (13)

where wt
ij is the t-th word of the explanation Wij , Cij

denotes the context information about user ui and item vj ,
which will be described in the following section, fh is a non-
linear mapping function that decodes ht into word wt

ij , ht

is the hidden state at the time t and it depends on the input
xt at the time t and the previous hidden state ht−1:

ht = LSTM(ht−1,xt). (14)

4. Although ATanh is very close to the sign function, there are still
very few activations that are not -1 or +1. For these activations, we
binarize them directly.

Sequence hidden state is updated based on the following
operations:

ft = σ(Wf ⊗ [ht−1,xt] + bf ),

it = σ(Wi ⊗ [ht−1,xt] + bi),

C̃t = tanh(Wc ⊗ [ht−1,xt] + bc),

Ct = ft ∗Ct−1 + it ∗ C̃t,

ot = σ(Wo ⊗ [ht−1,xt] + bo),

ht = ot ∗ tanh(Ct),

(15)

where xt is the embedding vector for the word et of the
explanation and the vector is also obtained during the end-
to-end learning process of our framework, ft denotes the
forget gate and it is the input gate, ⊗ represents element-
wise multiplication and σ(·) means the softmax function.

As shown in Fig.1, when t = 1, the LSTM model has no
word vector as an input. Therefore, we adopt the context
information Cij as the input at t = 1. Cij will guide the ex-
planation generation module to generate natural language
explanation for the corresponding user-item pair, which will
directly affect the performance of the recommender systems.
In our framework, the context information Cij consists of
predicted preference value r̂ij , and corresponding binary
hash codes bi and dj of user ui and item vj , respectively.

For the hash codes bi and dj , we can directly find
them from the matrices B and D, respectively. To control
the sentiment tendency of the generated explanation, we
add the predicted preference value r̂ij to Cij . Similar to
NARRE [48], r̂ij will be vectorized into its one-hot form.
For example, r̂ij = 0.34, in the 5-star rating system, we
scale it to the range [0, 5] and round it, then we get the
vector r̂ij = (0, 0, 0, 1, 0, 0)T .

After obtaining the context information Cij =
[bi,dj , r̂ij ], we transform it into the initial input xij

1 at t = 1
by a non-linear mapping:

xij
1 = tanh(WCCij + bC). (16)

where WC and bC are parameters to be learned.
Then, LSTM can perform sequence decoding and gen-

erate the hidden state sequence. The hidden state hij
t will

be mapped into a |V |-size vector êijt through the final
generation layer, where V is the vocabulary of words in the
reviews and explanations:

êijt = σ(Weh
ij
t + be), (17)

where We ∈ R|V|×dh and be ∈ R|V|, dh is dimensionality of
the hidden state space, σ(·) denotes the softmax function.
Then the word with the highest probability in step t is
selected as the t-th word of the explanation:

ŵij
t = arg max êijt . (18)

At the training stage, we employ Negative Log Loss
(NLL) as the loss function for the explanation generation
module:

LEG = −
∑

(ui,vj)∈Y +

∑
w∈Wij

log ê
(Iw)
ij , (19)

where Iw is the vocabulary index of the word w.
3.4 Adaptive Multi-task Learning
Traditional multi-task learning tends to simply conduct a
weighted linear sum of the losses for each individual task,
which usually requires manual adjustment of their weights.
However, the learning performance of the model is very
sensitive to the weights, and it is difficult to manually adjust
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them to obtain a better model for multiple tasks simultane-
ously. In addition, manually adjusting these weights is a
very time-consuming task in practice.

To address this problem, we introduce task-dependent
uncertainty [22] for adaptive multi-task learning, and the
overall objective function of the proposed model is as fol-
lows:

L =
1

ϕ2
1

LPP +
1

ϕ2
2

LEG + λ1 logϕ1ϕ2 + λ2||α−1||22 + λ3||Θ||22,

(20)

where ϕ1 and ϕ2 denote the uncertainty in the two tasks,
respectively, ||α−1||22 is a penalty term, which is a convenient
way to make the α in Eq.(11) increase during the training
process, Θ denotes the set of neural parameters, λ1, λ2 and
λ3 are regularization parameters. The whole framework can
be effectively trained end-to-end using back-propagation.

Intuitively, the larger the ϕ1(ϕ2), the greater the un-
certainty of the task and the smaller the weight of the
corresponding task. That is, during the training process,
the model will preferentially learn tasks that are less noisy
and easier to learn. However, it does not mean that the
noisier and harder tasks are not emphasized. The effect of
introducing uncertainty on model learning will be explored
in detail in our experiments.
4 EXPERIMENTS
4.1 Evaluation Datasets
We conduct the experiments on four well-known datasets.
They have been widely tested in recent hashing-based rec-
ommendation methods [10, 11, 14, 17, 18, 49]. The ratings
in these datasets are all based on the 5-star rating system.
Specifically, three datasets are from Amazon 5-core5: Kindle
Store, Movies&TV and Electronics. These datasets contain
user ratings and reviews of various products, and all users
and products correspond to at least 5 reviews. Another
dataset is Yelp6, which contains user ratings and reviews for
locations such as restaurants, hotels, and shopping centers.
Considering the sparse user reviews in the Yelp dataset, we
remove the users with less than 5 reviews. After the filtering,
there are 365,665 users, 159,108 items, as well as 5,766,970
ratings and reviews left in the Yelp dataset. For all these
datasets, we filter out the stop words and low-frequency
words from the reviews, and then build a vocabulary V for
each dataset. The statistics of the datasets are summarized
in Table 2.
4.2 Evaluation Baselines
To evaluate the performance of preference prediction, we
compare our method with the following state-of-the-art
baselines:
• Discrete Collaborative Filtering (DCF) [14] is the

first binarized collaborative filtering method that can
directly optimize the hash codes for users and items,
which outperforms almost all two-stage hash code
learning methods for collaborative filtering.

• Discrete Content-aware Matrix Factorization
(DCMF) [18] is the state-of-the-art binarized
method for CF with auxiliary information. It
improves the discriminative ability of hash codes
by encoding context information on the basis of

5. http://jmcauley.ucsd.edu/data/amazon
6. https://www.yelp.com/dataset/

TABLE 2
Statistics of experimental datasets.

Dataset #User #Item #Rating Sparsity |V|

Kindle Store 68,223 61,934 982,619 99.98% 44,656

Movies&TV 123,960 50,052 1,697,533 99.97% 69,434

Electronics 192,403 63,001 1,689,188 99.99% 50,023

Yelp 365,665 159,108 5,766,970 99.99% 83,553

DCF. The parameters λ1 and λ2 for modeling
user and item auxiliary features are tuned within
{1, 10, 50, 100, 500, 1000}.

• Discrete Factorization Machines (DFM) [11] is the
first binarized factorization machines method to re-
solve the rating prediction problem. It binarizes the
real-valued model parameters of each feature em-
bedding into binary codes. In DFM, the parameter
β for the softened de-correlation constraint is tuned
within {10−4, 10−3, 10−2, 10−1, 1, 10, 100} according
to the results of their sensitive analysis.

• Discrete Deep Learning (DDL) [17] is a binary deep
recommendation approach. It uses a Deep Belief
Network (DBN) to generate item hash codes from
auxiliary information, and combines the DBN with
DCF to solve the cold-start recommendation prob-
lem. The parameters α, β and λ are tuned within
{10−4, 10−3, 10−2, 10−1, 1, 10, 100}. The layer struc-
ture of DBN is set as [8000, 800, 30].

• Neural Hashing-based Collaborative Filtering
(NeuHash-CF) [49] is a deep hashing-based recom-
mendation approach, which utilizes two joint au-
toencoder architectures to generate user and item
hash codes from content information, respectively.
This method uses only the user’s ID to generate the
user hash code and the auxiliary information of the
item to generate the item hash code. This strategy
makes it have better performance in both cold-start
and general settings. We tune the parameters of this
method as described in the corresponding paper.

• Deep Matrix Factorization (DeepMF) [50] is a matrix
factorization model with a neural network structure.
It uses a deep architecture to learn low-dimensional
space representations of users and items from their
explicit ratings and implicit feedback. We set the
learning rate to 0.0001 and randomly initialize model
parameters according to the original paper descrip-
tion.

To evaluate the performance of explanation generation,
we compare EDCF with two explainable recommendation
methods based on textual sentence explanation and a re-
fined retrieval-based explanation generation method:

• NARRE [48] is a neural attentional regression model
with review-level explanations for recommendation.
It calculates the usefulness of user reviews while
predicting ratings. NARRE selects useful reviews
that provide detailed information about an item and
valid purchase suggestions as an explanation of the
recommendation results. The model parameters are
tuned as described in the original text.

• NRT [42] is a generation-based explanation method.
NRT uses a deep architecture to predict user ratings
and utilizes a gated recurrent neural networks to
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Fig. 3. Comparison of EDCF with baseline algorithms on Kindle Store, Movies&TV, Electronics and YELP.

generate a short text (tips) as an explanation of the
recommendation. We set the dimension of latent
factor as 300 and hidden size as 400. The parameters
λr , λc, λs and λn are tuned within {10−4, 10−2, 1}.

• LexRank [51] is a classical method in the field of
text summarization. It uses a graph-based approach
to compute the correlation between sentences, and
selects core sentences to generate summarization.
Similar to [42], we refine LexRank to make it capable
of extracting sentences for explanation generation.
For a detailed description of the refinements, please
refer to [42].

4.3 Evaluation Metrics
The goal of our proposed framework is to find out the top-K
items that are most interesting to the target user, while gen-
erating natural language explanations of recommendation
results.

To evaluate the performance of preference prediction,
in our experiments, we adopt two common ranking eval-
uation methods: Accuracy@K and Normalized Discounted
Cumulative Gain (NDCG), to evaluate the quality of the rec-
ommendation list. Accuracy@K is widely used as a metric
for previous ranking based recommender systems [17, 52]
to test whether the target user’s favorite items appear in
the top-K recommendation list. NDCG is a widely used
measure for evaluating recommendation algorithms [53, 54],
which incorporates both ranking precisions and the position
of ratings.

For the evaluation of explanation generation, we take
the review written by the user for the item as the ground
truth and use ROUGE [55] and BLEU [56] as our evaluation
metrics. They are widely used to test the performance of

explainable recommendation algorithms [42, 44]. In our
experiments, we use Recall, Precision and F-measure metrics
of ROUGE-1, ROUGE-2 and ROUGE-L, as well as BLEU to
evaluate the quality of the generated explanation.

4.4 Experimental Settings
To evaluate the performance of top-K recommendation, we
adopt the widely used leave-one-out evaluation strategy [57,
58]. For each user, we select their latest interaction data to
construct the test set, and the remaining interaction data
are used for training. At the testing stage, we follow the
common strategy [58, 59] that randomly selects 99 items that
have not interacted with the target user as interference items
for each ground-truth item, and rank these 100 items (99
interference items and the ground-truth item) to test the top-
K recommendation performance of our method.

When training our model, inspired by [50], we randomly
select two negative instances for each positive instance
to form negative instance set Y −. Specifically, we set the
ratings of negative user-item pairs to zero. However, since
negative instances have no review information, they are
only used to train the preference prediction module and are
not involved in the training of the explanation generation
module. The Word2Vec7 model pre-trained on Google News
is used to initialize the word embedding matrix, and the
words without pre-trained are randomly initialized and
updated during the training process.

For neural network, we randomly initialize model pa-
rameters with a Gaussian distribution and select Adam
[60] as training optimizer. All the best hyper-parameters
are found by grid search. We implemente EDCF based on
TensorFlow, and the code is published on Github8.

7. https://code.google.com/archive/p/word2vec/
8. https://github.com/zzmylq/EDCF
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TABLE 3

Performance of explanation generation on Kindle Store.

Methods
ROUGE-1 ROUGE-2 ROUGE-L

BLEU
R P F1 R P F1 R P F1

LexRank 0.17969 0.18116 0.17904 0.02636 0.02759 0.02637 0.13934 0.14072 0.13877 0.25085

NARRE 0.28953 0.15674 0.19324 0.02769 0.01246 0.01607 0.18544 0.09936 0.12269 0.22911

NRT 0.23923 0.15213 0.17317 0.03572 0.01716 0.02111 0.20891 0.12989 0.14879 0.15575

EDCF SE 0.30162 0.41416 0.34645 0.05887 0.06047 0.05948 0.25454 0.34982 0.29243 0.31524

EDCF (ours) 0.32911 0.43030 0.37061 0.07388 0.07526 0.07440 0.28307 0.37014 0.31873 0.33833

TABLE 4
Performance of explanation generation on Movies&TV.

Methods
ROUGE-1 ROUGE-2 ROUGE-L

BLEU
R P F1 R P F1 R P F1

LexRank 0.16431 0.16416 0.16298 0.02213 0.02294 0.02209 0.12820 0.12814 0.12703 0.24137

NARRE 0.22172 0.13928 0.16310 0.01090 0.00588 0.00720 0.14685 0.09072 0.10655 0.22944

NRT 0.21127 0.13716 0.15433 0.03247 0.01503 0.01915 0.18428 0.11646 0.13219 0.14708

EDCF SE 0.27832 0.39083 0.32242 0.04590 0.04726 0.04642 0.23322 0.32798 0.27025 0.29155

EDCF (ours) 0.29605 0.39821 0.33701 0.05367 0.05484 0.05407 0.25091 0.33780 0.28567 0.30834

TABLE 5
Performance of explanation generation on Electronics.

Methods
ROUGE-1 ROUGE-2 ROUGE-L

BLEU
R P F1 R P F1 R P F1

LexRank 0.17127 0.17313 0.17083 0.01713 0.01832 0.01718 0.13202 0.13372 0.13162 0.23948

NARRE 0.24037 0.15655 0.18331 0.01949 0.01059 0.01322 0.15395 0.09860 0.11604 0.24274

NRT 0.21521 0.14617 0.16119 0.03423 0.01617 0.01994 0.19198 0.12858 0.14246 0.13812

EDCF SE 0.28375 0.37252 0.31982 0.04504 0.04573 0.04527 0.23839 0.31327 0.26875 0.28923

EDCF (ours) 0.29773 0.38154 0.33232 0.05064 0.05127 0.05084 0.25135 0.32236 0.28060 0.30410

TABLE 6
Performance of explanation generation on Yelp.

Methods
ROUGE-1 ROUGE-2 ROUGE-L

BLEU
R P F1 R P F1 R P F1

LexRank 0.14798 0.14987 0.14801 0.01500 0.01585 0.01504 0.11515 0.11687 0.11518 0.22774

NARRE 0.31342 0.10629 0.15315 0.02617 0.00657 0.01006 0.19497 0.06550 0.09449 0.15703

NRT 0.19902 0.13559 0.15169 0.02473 0.01217 0.01515 0.17101 0.11436 0.12867 0.15719

EDCF SE 0.27616 0.38478 0.31946 0.04682 0.04822 0.04744 0.23567 0.32898 0.27281 0.29208

EDCF (ours) 0.32308 0.41699 0.35989 0.05742 0.05209 0.05398 0.25274 0.32509 0.28099 0.29846

4.5 Results and Analysis
4.5.1 Preference Prediciton
In this subsection, we evaluate the preference prediction
performance of our proposed EDCF method through a
ranking task. Fig.3 demonstrates the ranking performance,
including Accuracy@K and NDCG@K of EDCF and com-
peting baselines on four real-world datasets when the hash
code length is set as 128.

In our experiments, we select the prevailing hashing-
based recommendation method as well as prevailing con-
tinuous value based recommendation method as baselines.
Specifically, to evaluate the preference prediction perfor-
mance of EDCF on the single-task case, we design a
variant of the EDCF method called EDCF SR. It removes
the explanation generation module from EDCF and keeps
the attentive TextCNN and neural discrete collaborative
filtering modules. From Fig.3, we can observe that the
proposed EDCF framework consistently and significantly
outperforms all comparative methods with respect to Ac-

curacy@K and NDCG@K on all datasets.
DCF is a classical hashing-based recommendation al-

gorithm that adopts a bit-by-bit optimization strategy to
learn hash codes. However, it only uses interaction infor-
mation for rating prediction, which limits its recommenda-
tion performance. DCMF extends DCF and considers the
content information of users and items. However, it fails
to fully exploit the non-linear correlation between content
features. DFM adopts the factorization machine to model
the potential relevance between features, but ignores the
collaborative interaction. DDL applies DBN to extract item
features, which is not trained in an end-to-end deep network
architecture. In other words, DDL extends DCF by adding
DBN, which cannot fully exploit the feature learning capa-
bility of deep networks.

Moreover, these experimental results show that the pro-
posed EDCF outperforms both the hashing-based deep
recommendation method NeuHash-CF and the continuous
value based deep recommendation method DeepMF. The
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TABLE 7

Examples of the predicted ratings and the generated explanations.

Case
Ground truth Prediction

Rating Review Rating Review

1 5

I started reading Debora’s books from the very beginning

of the series, and they keep getting better and better. I am

disappointed to see this line of the series end but cannot

wait for the new one to start.

4.878

I love reading Geary’s story the very beginning,

see how author and book are better and better.

I wait for the next story.

2 5

I love this series by Debora. I tripped into it then realized

it was a series. I have read them out of order and still love

them. I hope she continues to write them because the

characters are really developing.

4.805
I love this series and the Geary. I have read all

of the order, and the story are so good.

3 1

This was a good storyline but the grammar and phrasing

were terrible. I would have enjoyed this read a lot more if

I did not keep tripping over the horrific misspellings and

completely wrong words.

0.821
It was a good story. But the spelling errors, I not

like the book.

4 1

The story was ok, but the writer was terrible. There were

so many grammatical errors and spelling errors.

I wouldn’t buy another book by this author.

1.289
The story line is good, but the author did many

errors. I haven’t recommend this book.

better performance of EDCF SR than NeuHash-CF and
DeepMF validates the effectiveness of nerual discrete col-
laborative filtering module, and demonstrates that the dis-
criminative hash codes can be learned by our proposed deep
hashing architecture. Additionally, from the experimental
results, we notice that the proposed EDCF outperforms
EDCF SR, which demonstrates the effectiveness of the pro-
posed multi-task learning strategy. A detailed analysis of
EDCF SR will be provided in section 4.5.4.
4.5.2 Explanation Generation
In the online recommendation stage, the top-k recommen-
dation task is executed very fast because the Hamming sim-
ilarity can be computed very efficiently using an Exclusive-
Or operation. Differently, the explanation generation task
relies on the LSTM model, and the generation process of
natural language explanation requires computation opera-
tions in continuous numerical space, so there is a significant
efficiency difference between the two tasks. To address this
issue, we first generate top-K recommendations by efficient
hash code matching, and then the LSTM-based explanation
generation module is used to generate the corresponding K
explanations. In addition, the base model of the explanation
generation module can be replaced according to specific
application scenarios.

To evaluate the explanation generation performance of
EDCF in the single-task case, we designed a variant of
the EDCF method called EDCF SE. It removes the neural
discrete collaborative filtering module from EDCF, and uses
the features of target user and item candidates extracted by
the attentive TextCNN module as the input to the LSTM to
predict the target users’ reviews of the item candidates.

The evaluation results of explanation generation of
EDCF and the comparative methods are given in Table 3
- Table 6. In order to show more details, we also report
Recall, Precision, and F1-measure of ROUGE-1, ROUGE-2
and ROUGE-L. From the experimental results, we can see
that our proposed EDCF achieves significant improvement
in all metrics compared to competitive methods on all four
datasets.

From the results, we notice that explanation generation
performance of EDCF is much better than EDCF SE, which
illustrates the effectiveness of the multi-task learning strat-
egy. The better performance of EDCF SE than LexRank,
NARRE and NRT validates the effectiveness of the natural
language explanation generation module. A detailed analy-
sis of EDCF SE will be provided in section 4.5.4. Moreover,
the experimental results show that the proposed EDCF out-
performs NRT, which is also a generation-based explainable
recommendation algorithm. The reason is that the goal of
NRT is to generate tips as natural language explanation
of the recommendation results. In the original paper, the
authors use the summary field in the Amazon dataset as
tips for training and use reviews as auxiliary information
to participate in model training. However, summaries and
reviews are not always available. Since most recommender
systems only have review information available, the perfor-
mance of NRT will be degraded in this case.

4.5.3 Case Analysis

We provide some real cases in Table 7 to analyze the lin-
guistic quality and the sentiment correlation between the
predicted ratings and the generated explanations. Benefiting
from the information sharing in multi-task learning, EDCF
can take into account user interests and item features when
generating natural language explanations. For example,
from the analyses of case 1 and case 2, we can observe
that the generated explanations accurately predict the users’
preferences for the author Debora Geary, and predict that
the book belongs to a series. Specifically, the generated
explanations not only align with the ground truth ratings
in terms of overall sentiment but also provide accurate ex-
planations for the recommendation results at a fine-grained
aspect level. For example, the generated explanations of case
3 and case 4 are shown that although users rate the book
positively in terms of storyline, they end up with a one-
star rating due to significant problems with the author’s
writing, which is consistent with the semantics expressed
by the ground truth reviews.
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TABLE 8

Ablation experimental results on Kindle Store and Movies&TV.

Dataset Methods Acc@20 NDCG@20
ROUGE-1 ROUGE-2 ROUGE-L

BLEU
R P F R P F R P F

Kindle Store

EDCF 0.43112 0.19226 0.32911 0.43030 0.37061 0.07388 0.07526 0.07440 0.28307 0.37014 0.31873 0.33833

EDCF WA 0.41553 0.17510 0.32653 0.42762 0.36784 0.07245 0.07382 0.07296 0.28040 0.36723 0.31584 0.33602

EDCF EMW 0.40517 0.16912 0.32551 0.42758 0.36712 0.07191 0.07323 0.07239 0.27943 0.36707 0.31510 0.33577

EDCF FMW 0.42959 0.19075 0.32782 0.42969 0.36949 0.07340 0.07480 0.07393 0.28227 0.37004 0.31812 0.33737

EDCF SR 0.42846 0.18945 —— —— —— —— —— —— —— —— —— ——

EDCF SE —— —— 0.30162 0.41416 0.34645 0.05887 0.06047 0.05948 0.25454 0.34982 0.29243 0.31524

Movies&TV

EDCF 0.59973 0.30147 0.29605 0.39821 0.33701 0.05367 0.05484 0.05407 0.25091 0.33780 0.28567 0.30834

EDCF WA 0.55520 0.27253 0.29251 0.39534 0.33363 0.05186 0.05303 0.05226 0.24732 0.33461 0.28214 0.30458

EDCF EMW 0.52787 0.25002 0.29097 0.39608 0.33288 0.05145 0.05268 0.05189 0.24619 0.33547 0.28170 0.30313

EDCF FMW 0.59019 0.29748 0.29444 0.39757 0.33576 0.05296 0.05420 0.05340 0.24963 0.33738 0.28471 0.30718

EDCF SR 0.57835 0.28919 —— —— —— —— —— —— —— —— —— ——

EDCF SE —— —— 0.27894 0.40026 0.32623 0.04728 0.04879 0.04790 0.23304 0.33486 0.27265 0.29052

Fig. 4. Effects of the multi-task learning strategy on Kindle Store (a-b) and Electronics (c-d).

For linguistic quality, the syntax of some generated ex-
planations is problematic and some redundant stop words
may be generated. In addition, the words used in the gen-
erated explanations may be inaccurate, but these words are
semantically similar to the ground-truth.

In general, although the language quality still needs to
be improved, EDCF can generate fine-grained semantic-
informative reviews to illustrate why the system recom-
mends the items from multiple perspectives.
4.5.4 Ablation Analysis
In this paper, we propose a multi-task deep hashing frame-
work for explainable recommendation that extracts user
and item features from reviews via an attentive TextCNN,
and adaptively adjusts the weights of multiple tasks during
training by modeling their uncertainty. In this subsection,
we design five variants of our method to evaluate the
feature extraction performance of the attentive TextCNN
and the effictiveness of adaptive weight learning strategy: 1)
EDCF WA: It replaces the review feature extraction module
with a simple TextCNN network. 2) EDCF EMW: It fixes
the weight of each task to 1 during the training process.
3) EDCF FMW: We perform a full training of EDCF in ad-
vance and obtain the weights wfinal

1 and wfinal
2 of the two

tasks that converge at the end of the training. EDCF FMW
fixes the weights of the two tasks as wfinal

1 and wfinal
2

respectively during the training process. 4) EDCF SR and
EDCF SE: Two variants of our method described in sections
4.5.1 and 4.5.2, respectively.

Table 8 shows the comparison of the top-K recommen-
dation and explanation generation performance. It can be
easily observed that the performance of our method is
obviously higher than that of the variants in both top-K
recommendation and explanation generation tasks.

The performance of EDCF is higher than EDCF WA on
both tasks, demonstrating the effectiveness of the attention
module on extracting text features. In addition, the exper-
imental results of EDCF SR and EDCF SE illustrate that
multiple tasks can be mutually reinforced in the adaptive
multi-task learning process. Additionally, the performance
degradation of EDCF EMW and EDCF FMW also validates
the effectiveness of the adaptive weight learning strategy.
Specifically, the detailed experiments and analyses of the
adaptive weight learning strategy are provided in the fol-
lowing subsection.

4.5.5 Effects of Adaptive Multi-task Learning

At the beginning of the training, we initialize both ϕ1 and
ϕ2 to 1. The uncertainty-based adaptive weight learning
strategy will tend to learn the easier tasks first. From Fig.4,
we can see that the value of ϕ1 is consistently larger than
ϕ2, which means that explanation generation is the easier
task during training, while the preference prediction task is
more difficult. Therefore, we can see that the BLEU metric,
which measures the performance of explanation generation,
achieves a high-level preferentially after a few epochs of
training. However, the HR metric, which measures the per-
formance of preference prediction, improves slowly during
this period. Then, the ϕ1 starts to decrease, i.e., the weight
of the preference prediction task starts to increase, and the
HR metric also improves rapidly. Finally, the performance
evaluation metrics of both tasks tend to converge. That is,
during the training process, the model gives priority to the
easier explanation generation task, and then focuses on the
more difficult preference prediction task, until both tasks are
better solved.
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TABLE 9
Performance w.r.t. different hash code length.

Dataset HL Acc@20 NDCG@20
ROUGE-1 ROUGE-2 ROUGE-L

BLEU
R P F R P F R P F

Kindle Store

32 0.32137 0.11443 0.31101 0.42012 0.35482 0.06457 0.06599 0.06511 0.26462 0.35753 0.30188 0.32105

64 0.38313 0.15416 0.32499 0.42681 0.36648 0.07168 0.07301 0.07216 0.27895 0.36634 0.31450 0.33478

128 0.43112 0.19226 0.32839 0.42968 0.36988 0.07375 0.07513 0.07427 0.28260 0.36982 0.31828 0.33845

256 0.43667 0.19426 0.32911 0.43030 0.37061 0.07388 0.07526 0.07440 0.28307 0.37014 0.31873 0.33833

Movies&TV

32 0.46313 0.20504 0.29058 0.39621 0.33264 0.05128 0.05253 0.05172 0.24542 0.33494 0.28098 0.30305

64 0.53361 0.25455 0.29099 0.39557 0.33268 0.05165 0.05287 0.05208 0.24629 0.33514 0.28162 0.30341

128 0.59973 0.30147 0.29605 0.39821 0.33701 0.05367 0.05484 0.05407 0.25091 0.33780 0.28567 0.30834

256 0.60544 0.30313 0.29707 0.39878 0.33796 0.05412 0.05527 0.05451 0.25190 0.33848 0.28663 0.30862

Fig. 5. Effects of ATanh with different α, and the speedup ratio w.r.t hash code length.

4.5.6 Hashing Performance Analysis

We conduct experiments to analyze the performance of
hash learning. Table 9 shows the performance of EDCF on
preference prediction and explanation generation tasks with
different hash code lengths. From Table 9 we can observe
that the performance metrics of EDCF are improving as the
hash code length increases. However, when the hash code
length is larger than 128 bits, the doubling of the hash code
length has a limited effect on the performance improvement.
Therefore, the storage space and performance requirements
of the model need to be balanced in practical applications.

Next, we analyze the improvement of recommendation
efficiency by using binary hash codes. Fig.5(c) shows the
speedup of the binary hash codes in feature matching for
different hash code lengths, which is compared with the
continuous-valued feature representation method of equal
length. We can see that the improvement of matching speed
by the binary hash codes method becomes more and more
significant as the length of the hash codes increases.

Additionally, we add ATanh layer to the neural network
in order to enable end-to-end deep hash learning. The
most important parameter in ATanh is α, which determines
whether the learned feature representations are binary or
not. Therefore, we design experiments to observe the ef-
fect of α on hash learning and model performance. From
Fig.5(a) and Fig.5(b) we can see that when α ≥ 103, the
learned feature representations are almost binary, and when
α ≥ 104, the model can output stable binary feature repre-
sentations. We also note that the performance degradation
is about 2.5% to 12.5% using the binary feature representa-
tion (α ≥ 104) compared to the continuous-valued feature
representation (α = 1). However, considering the significant
efficiency gain by using binary feature representation shown
in Fig.5(c), this approach has important practical value,

Fig. 6. Effects of selection ratio of negative samples on Kindle Store and
Movies&TV.

especially in two-stage recommender systems, which con-
sists of a hashing-based recalling stage and a fine-ranking
stage. Finally, we investigate the effect of the number of
negative instances in the training set on hash learning.
Fig.6 shows the effect of the ratio of negative instances to
positive instances on the performance of the model. We can
observe that introducing a moderate amount of negative
instances is advantageous, but a large number of negative
instances damage the performance of the model due to the
interference of huge noises. Therefore, in our experiments,
we adopt the strategy of assigning two negative instances
for each positive instance to introduce a moderate amount
of negative instances.

5 CONCLUSION
In this paper, we propose an explainable discrete collabora-
tive filtering method that projects user-item interaction and
review information into hash codes to support efficient top-
K recommendation while generating the natural language
explanation of the recommendation results. The proposed
method can generate binary hash codes directly during end-
to-end deep network training, automatically adjust multi-
task weights through an uncertainty-based adaptive weight
strategy, and generate natural language explanations using
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binary hash codes as input. Moreover, our method only
uses users’ publicly available ratings and reviews on the
web as input, thus effectively protecting users’ privacy. The
evaluation on four widely tested datasets shows that the
proposed method outperforms the state-of-the-art baselines
on both preference prediction and explanation generation
tasks.
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